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LP-SBA-XACML: Lightweight Semantics based Scheme embedded

with Intelligent Behavior-aware Privacy Preserving Model

Mohamad A Chehab

ABSTRACT

The wide applicability of Internet of Things (IoT) would truly enable the per-

vasiveness of smart devices for sensing data. IoT coupled with machine learning

would enter us in an era of smart and personalized, services. In order to achieve

service personalization, there is a need to collect sensitive data about the users.

That yields to privacy concerns due to the possibility of abusing the data or hav-

ing attackers to gain unauthorized access. Moreover, the nature of IoT devices,

being resource and computationally constrained, makes it difficult to perform

heavy protection mechanisms. Despite the presence of several solutions for pro-

tecting user privacy, they were not created for the purpose of running on small

devices at a large scale. On top of that, existing solutions lack the customization

of user privacy in which users have little to no control over their own private

data. In this regards, we address the aforementioned issue of protecting user’s

privacy while taking into account efficiency as well as memory usage. The pro-

posed scheme embeds an efficient and lightweight algebra based that targets user

privacy and provides efficient policy evaluation. Moreover, an intelligent model to

customize user’s privacy based on real time behavior is integrated. Experiments

conducted on synthetic and real-life scenarios to demonstrate the feasibility and

relevance of our proposed framework within IoT environment.
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Chapter 1

Introduction

1.1 Motivations and Problem Statement

Internet of Things (IoT) is attracting a lot of interest from academics and the

industry as well due to its high accessibility and diverse set of applications ranging

from wearables, sensing as a service, health care, automobiles and smart cities

[35] [50]. The nature of IoT devices of being cheap, small, and Internet connected

devices allows their integration in various environments for continuous collection

of sensitive and fine grained data. Investments in this field are increasing at a

rapid rate where, according to [22], expenditure is expected to reach $2 trillion

by 2020. Additionally, considering that most applications of IoT are consumer

based, and in the era of big data, vendors would try collecting all sort of data

about their users in order to make the most out of it. To complicate things even

further, vendors would have access to finer and more sensitive data about their

users. Unfortunately, users have little to no control over the non-stop collection

of their own private data.

IoT, on its own, is not enough to provide a service or achieve an intelligent

entity. The main motivation behind this new paradigm is the type of the collected

data. As mentioned earlier, the nature of the collected data is fine grained and

private. This data would be stored in a data center for analysis and business use.

However, it’s far from feasible to manually analyze and interpret the data. Thus,
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different data mining techniques would be used in order to find some meaning

of the collected data and perform some action to provide a personalized service

for the users. Big data, machine learning and IoT, when combined, provide

an ideal personalized service for users. One current research interest in IoT

is activity recognition and monitoring. This area has been thoroughly covered

by [44], [39], [51] and several others. Different machine learning algorithms are

being incorporated in order to recognize user’s current activity. Recognizing a

user’s activity aids in providing a high level context of what the user is currently

doing. This context can then be further incorporated with other data to provide

a customized service. However, despite all that, researchers are yet to overcome

the challenges mentioned by [38]: (1) poor performance results in uncontrolled

environment and (2) security and privacy of the collected data.

As mentioned earlier, machine learning is being incorporated in IoT to make

the most out of the collected data. Yet, despite all that effort, challenges men-

tioned by [49] are yet to be adhered. Challenges such as online mobile activity

recognition, unsupervised activity recognition and light-weight models that can

efficiently run on resource constrained devices are yet to be resolved. Addition-

ally, according to the authors, little to no research has been done to recognize

high level activities, which, according to their expectation, is to be one of the

next research trend.

On top of that, considering that the IoT paradigm is steadily increasing,

the number of deployed devices and the provided services will only increase,

leading to more and more collection of data. In order to use these services,

users are forced to comply with the vendors terms. This leads to the issue of

pervasiveness and intrusiveness of IoT devices. These can be incorporated with

ease in an environment without the user notice. This leads to several privacy

concerns since these devices continuously collect fine grained data about users.

Smart IoT devices, such as speakers, TVs, cameras, smartphones, etc. are being

integrated in homes to create a smart home environment. However, according
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to [7], such devices ”leak” privacy information which might reveal sensitive data

about the users even though the network traffic is encrypted. Moreover, the

authors managed to identify the devices and infer possible behavior such as went

sleeping, woke up etc.

Furthermore, the nature of the collected data is private and should be well

protected. According to [22], 63% of IoT deployment is consumer based. Thus,

protection of privacy for consumers should be of high importance. Additionally,

the nature of the devices, being computationally weak aggravates the problem.

Therefore, a lightweight and robust solution is required to provide the required

protection.

In this regards, several methodologies have been implemented in order to

preserve and protect user’s privacy based on standard access control techniques

such as RBAC and ACL and several others. However, traditional centralized

approaches do not scale to the large number of of IoT devices and not suitable to

run on resource constrained devices, and thus, new solutions need to be proposed.

Moreover, several solutions have been proposed in order to preserve user’s pri-

vacy such as differential privacy [21][23][53], K-anonymity [6] and several others.

However, these solutions were proposed long before IoT was present and thus,

these approaches are used to run on powerful servers, making them inappropriate

for computationally weak IoT devices. Other works done in access control such

as RBAC, ACL, CapBAC and others [24] [31] [9] solve only part of the problem

and fail to give user control over his/her privacy.

1.2 Objectives

The main objective of this thesis is to give users control over their own data and

privacy while, at the same time, allowing vendors and services to collect data

based on user’s behavior. The main objectives are as follows:

1. Address privacy issue in collecting fine grained user data from IoT devices
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in which users would have control over their own privacy data.

2. Controlling collection of data based on user’s current behavior

1.3 Methodology and Contributions

In this thesis, we aim on tackling the issues mentioned earlier in the objectives.

For that, we propose our solution addressing each of the mentioned issues to

provide users with customized privacy based on their behavior.

1.3.1 LP-SBA-XACML: Lightweight Algebra based Pri-

vacy Preserving Scheme

In order to provide users with customized privacy, we proposed LP-SBA-XACML,

a lightweight scheme that builds on top of SBA-XACML [33], relevant for devices

with limited resources. Additionally, LP-SBA-XACML gives users complete con-

trol over their data, hence deciding what can be shared based on several criteria.

Experiment results explore clearly that the proposed platform and constructs

perform accurately and efficiently on limited-resource devices.

In this regards, the main contributions in this work are as follows:

• Customized user controlled privacy, where the user is provided with fine-

grained control over his/her data

• A semantic based language with dedicated privacy constructs for data col-

lection.

• Lightweight and efficient policy-based evaluation mechanism relevant for

IoT devices with very limited re- sources.
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1.3.2 Deep Learning-based Approach for Activity Recog-

nition and Privacy Customization

We extend our work from the previous section by linking data collection with

user’s behavior, in which users would want different data to be collected de-

pending on what they’re currently doing i.e. don’t access documents if at work.

In order to infer user’s behavior, we trained a deep neural network model us-

ing the TensorFlow framework [3]. Afterwards, we developed formal semantics

and integrated the behavior in the evaluation of our proposed LP-SBA-XACML

framework. Furthermore, our framework can be used as a behavior based service

management, in which users can ”subscribe” to a specific service for a certain

behavior, and the service would provide some functionality that the user is inter-

ested in.

In this regards, the main contributions in this work are as follows:

• A personalized behavioral recognition machine learning model in order to

infer user’s behavior in real time.

• Formal semantics for LP-SBA-XACML framework.

• Behavior based service management.

1.4 Thesis Organization

The remaining of the thesis is organized as follows: In Chapter Two, a thorough

overview about the literature review regarding context aware in IoT and machine

learning is presented. In Chapter Three describes our proposed LP-SBA-XACML.

First we explain our architecture and how the intelligent model integrates with

the language. Second, we present the algorithms for evaluating whether a request

or vendor can collect user’s data. In Chapter Four we present intelligent behavior

detection as well as the performed experiments and performance results. Then
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we conclude in Chapter Five where we summarize the contributions and future

work.
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Chapter 2

Background and Related Work

2.1 Introduction

In this chapter, we explain background concepts used in our thesis as well as

the literature review in this domain. The following concepts will be covered in

the background section: Internet of Things (IoT) and its issues, privacy and its

importance, SBA-XACML, machine learning overview and types of algorithms,

deep learning and TensorFlow.

2.2 Background

In this section, we represent a brief overview about the concepts of Internet of

Things, Security and Privacy concerns, SBA-XACML , Machine Learning and

finally TensorFlow framework.

2.2.1 Internet of Things Overview

According to [41], the authors identified four physical elements needed for any

IoT device: (1) Sensors for collecting information, (2) Identifiers to identify source

of the collected data, (3) Software responsible for processing the data and (4)

Internet connectivity. Thus, making IoT ”the network of things, with clear ele-

ment identification, embedded with software intelligence, sensors, and ubiquitous
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Figure 1: Internet of Things Overview

connectivity to the Internet” . IoT enables everyday ”things” and objects to

communicate, send and retrieve information, over the Internet. Considering that

there will be 20 billion devices by 2020, coupled with the fact that we currently

live in the big data age, there will be an exponential explosion of data to analyze

and make proper use of to provide customized and personalized services. Figure 1

aids in visualizing how flexible and versatile IoT is and how it can easily connect

and find applications in diverse domains.

2.2.2 Information Security and Privacy Concerns

The goal of information security is to protect any information (online, during

transmission, on device etc.) from unauthorized access. Information security has

several practical real world applications ranging from securing user’s personal

data up to secret governmental operations. Any secure system must provide

the following services: confidentiality, availability, integrity, authenticity and ac-

countability.

• Confidentiality: Preventing unauthorized disclosure to information

• Availability: Information must be available at all times whenever an autho-
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rized user wishes to access it.

• Integrity: A secure system should prevent any unauthorized altering of

information, thus, preventing ”fake” information.

• Authenticity:

• Accountability: Any user performing any action on information must be

held accountable for the change. The system must provide a way to verify

who did what and when.

Information security is a wide topic with several research paths. For that,

we limit the scope in this thesis to personal information generated by users on

their personal device and focus on ensuring that user’s privacy is maintained.

Especially in the digital age, information is being generated at an exponential

rate. For that, users need to be able to user different services and generate

data while knowing that their personal and private data is safe on their device,

especially in the IoT era where most of the data is considered to be private [22].

The Internet of Things has the potential to change the world, just as the

Internet did. Maybe even more so. [41]. However, this does not mean that IoT

does not come without its own set of issues and concerns. The fact that IoT

devices are Internet connected devices, this makes them susceptible to security

risks such as man in the middle attacks, unauthorized access to device, etc. Fur-

thermore, considering that IoT devices are physical objects, they can actually

cause physical damage [16]. To make matters worse, IoT has wide array of appli-

cations in health care, which is one of the areas where privacy and security are of

top priority. Moreover, considering IoT devices are, in general, computationally

weak, new measures need to be taken in order to provide proper security and

preserve privacy. Finally, most of the collected data is private, thus, users need

their privacy to be maintained [22]. Furthermore, according to [16], attackers

can learn about personal life and behavior of users from aggregating metadata

of different devices. Thus, information security is of high importance for the IoT
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era to ensure successful deployment of IoT services

2.2.3 Access Control

Access control is the first layer of security in any system and it plays a critical role

in ensuring the security and durability of the system. Where an unauthorized

access can lead to serious consequences to any organization. Simply put, access

control is the process of deciding whether a user has the right to access or use a

certain resource.

There are several models that tackle this issue, however, all models follow the

same conceptual flow and try to attain the same goals. As mentioned earlier, the

goal of an access control model is to moderate the system and ensure all existing

users have the right to access the resources. Figure 2 summarizes the general

flow for any access control model where: (1) a user sends his/her credentials to

be processed. (2) verify credentials, if the credentials are not valid, then access

is instantly denied. Otherwise, (3) load user profile and check privileges. If the

privileges enable the user to access the resource/system, grant access, otherwise,

access is denied.
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Figure 2: Access Control Flow

Access control is a huge topic that is continuously changing, where new tech-

niques and concepts are being proposed in the literature to improve existing access

control systems. In this thesis, we provide an overview about access control in

IoT in the literature review.

2.2.4 XACML

XACML, the eXtensible Access Control Markup Language, is an OASIS standard

that is based on XML for creating and enforcing access control policies [33].

XACML is composed of three main components: policy set, policies, and rules.

Policy set is a collection of other policy sets or policies. A ”policy combining

algorithm”, or PCA, is specified to combine and resolve conflicting policies. A

policy, on the other hand, is a collection of one or more rules. Similar to the

policy set, a policy must define a ”rule combining algorithm”, or RCA, to resolve
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Figure 3: XACML Architecture

conflicting rules. Finally, the rule, which is the smallest component in XACML

and it either grants access or denies.

Each of the components has a target, which is composed of zero or more sub-

jects, actions, and resources. If, at any level, the target of a request does not

match that of a policy set, policy, or rule, a result of not applicable is returned.

Figure 3 displays the architecture for an XACML engine. All XACML policies

are maintained by PAP, policy administration point. The PEP, policy enforce-

ment point, is responsible for receiving an XACML request and forwarding it to

the PDP, the policy decision point. PDP is responsible for evaluating the request

against the policies and reaching a final decision. The PDP might request ad-

ditional information, such as user profile, and does so by querying the PIP and

PRP, policy information/retrieval point.

2.2.5 SBA-XACML

Our work builds on top the work done by [33]. The authors proposed an efficient

alternative to the industry standard access control language, XACML, using set

algebra. XACML is known to be inefficient in evaluating huge policies [33]. For

that, SBA-XACML uses set algebra in order to efficiently reach to a decision.

Considering that SBA-XACML is fully compatible and is a lightweight version of
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Figure 4: SBA-XACML Architecture

XACML, we build on top of the language and add dedicated privacy constructs.

In this section, we describe an overview of SBA-XACML, how it maps to

XACML.

Target

A target consists of a set of subjects, resources and actions. It is mapped to

SBA-XACML as follows:

TR = {S,R,A}

where S represents a set of subjects, R set of resources, and A set of actions.

Obligations

Obligations can contain one or more obligations, which are methods that execute

under a permit or deny effect. It is mapped in SBA-XACML as follows:

OBLs = OBL− SET
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OBL = {OBLID,FFOn, {{AttId,DT, V }

in which OBL - Set represents the set of obligation OBL, OBLID corresponds

to the id that uniquely identifies the obligation, FFOn is the Fulfill On attribute

to determine when the obligation must be enforced (permit/deny), AttID is

the attribute of the obligation to be carried out, DT represents the type of the

attribute and V is the attribute value.

Policy Set

A policy set is represented in SBA-XACML as follows:

PS ::=< ID, SP, PR, PCA, IPS,OBLs, TR >

in which ID represents the policy set id, SP corresponds to the set of policies

that belong to PS, PR represents the precedence order of the policies, PCA is the

policy combining algorithm, IPS is the policies or policy set that are referenced

by PS, OBLs is the set of obligations and TR is the target.

Policy

A policy is represented in SBA-XACML as follows:

P ::=< ID, SR, PR,RCA,OBLs, TR >

in which ID is the policy id, SR corresponds to the set of rules that belong

to P, PR represents the precedence order of the rules, RCA corresponds to rule

combining algorithm, OBLs is the set of obligations and TR represents the target.

Rule

A rule is represented in SBA-XACML as follows:

R ::=< ID,RC, TR,RE >

14



in which ID uniquely identifies a rule, RC corresponds to the set of rule condi-

tions, TR is the target and RE is the rule effect.

RC is a boolean function that takes a list of parameters be it subjects, re-

sources, actions, or attributes. The RC is mapped to SBA-XACML syntax as

follows:

RC = {Applyfunction, {parameters}

where {Applyfunction} represents the function to be called and {parameters}

represent the attributes to get passed to the function.

SBA-XACML Request

An XACML request is sent by a subject S to access a specific resource R, and

perform some action A. In SBA-XACML, an XACML request is defined as follows:

Rq ::=< Sr,Rr,Ar >

SBA-XACML Response

An XACML response is the decision after evaluating policies against the request

sent. The response is composed of a decision D and obligations OBLs. It’s

mapped to SBA-XACML as follows:

Rs ::=< D,OBLs >

where D is the final decision after evaluating the policies, and OBLs is the set of

obligations.

2.2.6 SBA-XACML Architecture

Figure 4 summarizes the modules of SBA-XACML and how policy evaluation is

performed. SBA-XACML is comprised of a compiler that takes XACML request

15



and PolicySet as input, and translates them to SBA-XACML language. Once

the translation is performed, a module is responsible for evaluating the policy

against the received request. Finally, the evaluation engine outputs an SBA-

XACML response

2.2.7 Machine Learning Overview

Machine learning falls in one of three categories: (1) Supervised learning, (2)

Unsupervised learning, or (3) Semi-supervised learning[15]. According to [1],

machine learning can be defined as A computer program is said to learn from

experience E with respect to some class of tasks T and performance measure P,

if its performance at tasks in T, as measured by P, improves with experience

E. Simply put, machine learning algorithm is an algorithm that ”learns” from

experience. The algorithm updates its parameters based on the data that it

received so that it becomes more accurate at predicting and giving better results.

In this section, we’ll give a brief overview about different categories in machine

learning and about deep learning.

Figure 5: Machine Learning Overview

Figure 5 summarizes the main categories of machine learning and the type of

prediction or inference that they perform.
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Supervised Learning

A machine learning algorithm falls into the supervised learning if it uses labelled

data (X and Y) to predict the relation between the data and the result [29]

[1]. The algorithm receives the records, outputs some prediction value Ȳ and

compares it with the actual target value Y . The algorithm then computes an error

E to determine how ”far” is the predicted value from the actual target. Once the

error is calculated, the algorithm makes some minor ”updates” over its parameters

and iterates over the record data again. This process keeps on repeating until the

algorithm reaches an acceptable accuracy (set by the developer) or until a certain

number of iterations is reached. It is important to note that the type of data that

you have determines whether or not you can use a supervised approach.

In Figure 5, there are two types of predictions supervised learning algorithm

can perform: (1) Classification or (2) Regression. Classification is when we have

categorical data, that is, data that belongs to a finite set of classes. An example

of categorical data is image classification. Given an image, detect if its an image

of a flower, person etc. Theres a limited set of categories an image can belong

to. Regression, on the other hand, is when the output is continuous. A simple

example of regression is predicting stock price, where price is a continuous value.

Unsupervised Learning

In unsupervised learning, same as before, we have data record X, except that we

are missing the target value Y . This means that our data is unlabelled. So we do

not have a ”reference” or ”guide” for our algorithm since an error E cannot be

computed [29] [1]. Usually, the goal in unsupervised learning is to ”learn” some

relation or discover some pattern in the data. More specifically, we want to learn

the probability distribution of the dataset [1]. Usually, clustering algorithms are

used in such scenarios since they ”group” or ”cluster” data such that records

in the same ”group” or ”cluster” have the same pattern or belong to the same

category as shown in Figure 5
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Figure 6: Deep Neural Network

Semi-supervised Learning

This type of learning is when we have data, and only part of the data is labelled.

What happens is that the algorithm lears from the set of labeled data and tries

predicting or inferring the values of the unlabelled ones [15] [29].

Deep Learning

Deep learning uses a technique called Deep Neural Network (DNN). DNNs have

achieved high level of accuracy in computer vision, translation, robotoics, games

and speech recognition [15]. DNN is a type of Neural Network (NN), where its

simply a bunch of nodes in a layer, and these nodes are connected to nodes in

other layer. A NN is called ”deep” because it has multiple ”layers” of neurons

[15] [1]. Usually, a DNN requires lots of data in order to be trained properly

and is computationally demanding. However, if trained properly, DNN models

achieve best results. Figure 6 helps give a visual representation of a deep neural

network, where the first layer is our input layer, the last layer is our output layer,

where the network actually gives the output, and all the layers in between are

called hidden layers. We can have as many hidden layers as we want, there’s no

18



Figure 7: A Simple Flow Graph

”rule” to set the number of hidden layers and number of neurons in each hidden

layer. However, it’s important to keep in mind that the more layers we have, the

more complex the model becomes and the more time and computational power

needed to train the model.

TensorFlow

TensorFlow is a machine learning framework created by Google that enables

developers to create models that run on wide array of devices and platforms

such as Android, iOS, raspberry pi, Linux, Windows and macOS [3]. TensorFlow

uses dataflow graph to represent computation dependency between operations.

Nodes in the graph represent a unit of computation or operation and the edges

represent the ”flow” of ”tensors” (data record) from one node to another in a

directed manner. Figure 7 shows is a simple flow graph that adds two variables.

The variables, x and y, are defined as ”tensors”, and the operation ”Add” is

represented as a node in the graph. Since the operation is performed on the

variables, the x and y tensors are ”connected” to the operation. It’s important

to note that the connection is ”directed”, that is, the connection is only from x

to the Add operation, and from y to the Add operation. So when traversing the

graph, we cannot go from Add to any of the tensor variables.

2.3 Related Work

Our approach is based on customized and fine-grained privacy preserving access.

As such, we provide in this section the related work to the following categories: (1)
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privacy customization and access control, (2) activity and behavior recognition

2.3.1 Privacy Customization and Access Control

Privacy Preserving Techniques

Authors in [6] discussed some common privacy preserving techniques: random-

ization method and k-anonymity with l-diversity. The randomization method

adds noise to the data in order to mask the attribute values of records such that

individual record values cannot be recovered. This is the only one computation-

ally acceptable that can be done during data collection, without the need for a

trusted server. However, one downside of this approach is treating all records of

equal weight, making outlier records difficult to mask. Additionally, high dimen-

sional data reduces the effectiveness of this method and makes it susceptible to

adversarial attacks [5]. An alternative to the randomization method is anonymiz-

ing data. A well known technique is k-anonymity and l-diversity. This approach

requires that ”every tuple in the table be indistinguishable related to no fewer

than k respondents”. It is important to note that optimal anonymization has

been shown to be NP-hard. Therefore, researchers tend to use approximation

algorithms that provide a guarantee on the quality of the solution to be within

a certain factor. Additionally, k-anonymity is susceptible to homogeneity and

background knowledge attacks. Therefore, it’s rarely used by its own as means

to anonymize data, and is commonly integrated with l-diversity.

Other privacy preserving techniques mentioned by [36] are secure multi-party

computation (SMC) and homomorphic encryption (HE). SMC is a subfield of

cryptography and aims at creating methods for two or more parties to cooperate

on computing a function based on private inputs. It assumes that each party is

willing to contribute some data, however, the party contributes privately, without

letting other parties know the shared input. Despite accomplishing its goals, SMC

is known to be inefficient and is simply not feasible on IoT devices. HE, on the

other hand, is a form of encryption that allows computations on ciphertexts that
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generate an encrypted result such that when decrypted, it matches the result as

if it was performed on plaintext. The purpose of HE is to perform operations

on encrypted text without affecting privacy, confidentiality and integrity of the

message. Unfortunately, similar to SMC, HE is computationally intensive and

cannot be performed on a limited resource devices.

Authors in [11] proposed a framework for an efficient energy management for

preserving user privacy in smart grid environment. The proposed architecture

constitutes of IoT devices, IoT gateways, which are considered to be computa-

tionally powerful, fog devices and the cloud. Upon collecting energy data for each

user, the data is sent to the fog devices and are aggregated. Once aggregated,

you can no longer identify individual user data. Unfortunately, the authors did

not implement the framework and was left as future work.

Finally, differential privacy (DP), used by the industry giants Apple and

Google [20], is another technique that aims at preserving privacy of users. DP

is mostly used in database security and data mining where a database is made

publicly accessible. However, individual identity should not be exposed. One

common technique is to anonymize data. Unfortunately, data anonymization is

not always feasable shown in [34]. The authors have won the Kaggle Social Net-

work challenge by de-anonymizing the data with 90% accuracy by introducing

a simulated annealing-based weighted graph matching algorithm. For that, DP

is the de-facto standard when it comes to sharing public data privately. DP en-

sures the outcome of a calculation to be insensitive to any particular record in

the dataset [53]. Several publications propose DP as a means to collect data and

apply data mining algorithms while maintaining user privacy [21], [23] and [53].

However, there is a tradeoff between privacy and accuracy. Generally speaking,

the more privacy you want for the users, the less accurate the results are going

to be, and vice versa. Therefore, you need to strike a balance between privacy

and accuracy. Unfortunately, DP has two main drawbacks: (1) it requires a lot

of computational power, which is not feasible on IoT devices, and (2) most of the
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work done in DP assume that the data collector is trustworthy.

Privacy Related and Dynamic Access Control

Traditional access control methods such as RBAC and ACL are not fit for IoT due

to its decentralized architecture, heterogeneity, and high scalability. To overcome

such limitations, [24] proposed a capability based access control (CapBAC). A

capability is a communicable, unforgeable token of authority. It refers to a value

that uniquely references an object along with an associated set of access rights.

Once a user has a capability, s/he can access the object as specified by the

generated capability.

[31] proposed the usage of elliptic curve cryptography (ECC) for being a rela-

tively lightweight public key cryptography compared to RSA and symmetric key

cryptography (SKC). Additionally, they proposed the usage of OpenID technol-

ogy that allows users to have a single account and can have access to different

sites without the need to authenticate at each one. Finally, they incorporated

RBAC in order to enforce access control. The authors claim that there approach

is safe against eavesdropping, man-in-the-middle, replay, and key control attacks.

Unfortunately, no experiments where conducted to prove such claims. Addition-

ally, RBAC, as mentioned earlier, is simply not suitable for IoT environment due

to scalability issues.

[28] provided the first fully implemented two-way authentication security scheme

of DTLS on IoT, using RSA as their PKC algorithm. The authors managed to

perform a fully authenticated DTLS handshake based on an exchange of X.509

certificates, using 2048-bit RSA keys. The experiments where performed on real

IoT devices, with a memory limit of 48 KB RAM, with their implementation con-

suming less than 20 KB RAM. The provided implementation provides message

integrity, confidentiality and authenticity.

One important criteria to note when it comes to access control, as mentioned in

[36], if an access control methodology requires a user to expose attributes in order
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to be granted access, then privacy violation problems can arise. It is necessary

to maintain a balance between access control and privacy without undermining

one or the other.

[9] proposed a dynamic risk-based access control that uses real time environ-

ment features, such as location and time, to reach an access decision. A security

risk value is calculated based on the sensitivity of the data and type of operation

to be performed for each access request and is then compared with predefined

risk policies to reach a decision. In order for the approach to be dynamic, the

proposed model monitors user’s behavior for anomaly detection. The monitored

user behavior is compared with smart contract, which is a software code that

runs on blockchain, to ensure that the user acts as expected.

Authors in [26] proposed a user interactive privacy preserved access control

in IoT. They proposed a Human Interactive Security Protocol (HISP), which is

a protocol that enables users to publish IoT data in different levels of security.

Additionally, they proposed context aware k-anonymity for preserving privacy.

Depending on the context, access control rules or policies are generated. One

downside of their approach is lack of experimentation and performance tests.

Additionally, k-anonymity is known to be NP-hard [6], which makes it infeasible

to run on IoT devices.

Authors in [10] proposed a context aware usage control for the web of things.

Web of Things (WoT), as described by the authors, encapsulates functionalities

from IoT into publishable services on the web, hence providing a seamless inte-

gration between IoT and web. IoT devices connect to the ”Device abstraction

layer”, which is a layer that allows communication between different network pro-

tocols. Then the services are provided by the ”Web Service Provider”, which is

basically an application server that is connected to the Internet. Finally, they

used XACML in order to control access on the IoT devices.

A dynamic risk-aware access control model with XACML implementation for

the IoT platform was proposed by [40]. The authors applied the association rule
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learning (ARL) algorithm in order to calculate the risk of accessing an object.

The algorithm takes into account the history of the user in order to calculate the

risk value.

Finally, work done by [8] proposed an adaptive risk-based access control for

the IoT system. Access is granted if the calculated risk value is below a certain

threshold. The risk is calculated based on user history and contextual information

e.g. time and location. Finally, user behavior is continuously monitored in the

system, in real time, through the use of smart contracts. The risk value is con-

tinuously monitored and re-evaluated, so that whenever it crosses the threshold,

even when access is granted, the user is no longer allowed to access the resource.

To the best of our knowledge, non of the approaches so far have integrated

machine learning in access control in order to intelligently provide a dynamic

access control system based on user’s behavior.

2.3.2 Activity and Behavior Recognition

Simple Activity Recognition

Simple activities, as defined by [44], are activities that are repetitive by nature

and can be easily recognized using one sensor such as accelerometer.

Authors in [39] managed to recognize eating gestures through the use of wrist-

worn sensors (accelerometer and gyroscope) using the temporal sequencing tech-

nique. The authors compared Hidden Markov Model (HMM) and K-Nearest

Neighbor (KNN) to identify four different eating gestures: utensiling, bite, drink,

and rest. HMM proved to better recognize gestures with 84.1% accuracy com-

pared to 71.7% for KNN.

Work done by [51] developed an Android application for data collection and

created a universal model for activity recognition. The following activities were

recognized: walking, sitting, stairs, jogging and standing. The authors created

a universal model, which achieved an average of 75% accuracy. Once a user is

actively using the application, a personalized model is developed, achieving 95%
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accuracy.

A window based algorithm was proposed by [47] using the Support Vector

Machine (SVM) to detect activities and motions within an activity. The au-

thors achieved 91% accuracy for simple activities, however, for motion detection,

accuracy was much lower at 80%. According to the authors, such results are

understandable due to the short time window to recognize the motion.

Detecting activities using sensors is far from a simple task, especially when

their are myriad of sensors in a smartphone and the various positions that the

device is held. For this reason, authors in [45] identified which key sensors (and

their combination) play an integral role for activity recognition, as well as mea-

suring performance in four different positions. The authors concluded that the

combination of accelerometer and gyroscope yield, in most scenarios, better re-

sults than being used separately. Additionally, the accelerometer performs, in

general, better than the gyroscope to detect the performed activity.

Complex Activity Recognition

Simple and complex activities were identified by [44], in addition to analyzing the

different window size (2-30 seconds) and their efficiency in recognizing complex

activities. The identified complex activities are: upstairs, downstairs, coffee, talk,

smoke and eat. The authors concluded that larger window size resulted in better

capturing complex activities.

Authors in [14] recognized complex activities performed in a smart home en-

vironment. Simple activities such as walking, sitting etc. were detected using

smartphone accelerometer. Room detection using BLE beacons. Finally, ac-

celerometer from the smartwatch combined with the activity and room are used

in order to detect complex activities such as sweeping, vacuuming, writing, read-

ing etc. Another critical work done by [48] was defining complex fine-grained

activities in a smart home environment. The authors managed to identify 22

such activities including cooking, sit and eat, lying on bed etc.
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Context Activity Recognition

Work done by [32] enhance the display of information depending on the context

i.e. user activity and location. The authors identified three activities: walking,

running and standing using the SVM model. If the user is walking or running,

then reduce the amount of information displayed on the device and increase font

size in order to provide enhanced user experience. Additionally, they used location

context when the user is standing to display relevant information such as nearby

restaurants.

Authors in [12] took a different approach, in which they studied how context,

be it physical or social, can affect the behavior of individuals and assist in the

formation of healthy habits. The authors focused on the health aspect, stating

that wearable sensors can aid in inferring, in real-time, user behavior and take

necessary action when mixed with physical and social context.

Authors in [52] proposed a machine learning, context-aware system that pro-

vides a service depending on the current context in a smart home environment.

Finally, the concept of adaptive context-aware clinic for heart failures was pro-

posed by [4]. For that, they implemented an SVM with RBF kernel, achieving

an overall accuracy of 82.0%.

Intelligent Behavior Recognition

Machine learning has diverse set of applications when it comes to behavior recog-

nition from predicting transportation mode (walking—cycling—driving—public

transportation) [37] to a personalized recommendation framework based on user’s

clicks, queries and history[55] and [13].

Authors in [42] proposed an improved Naive Base classifier in order to predict

user’s phone call behavior(accepting, rejecting, missed, or outgoing). Similarly,

work done by [43] proposed a rule association based solution to extract a concise

set of behaviors.

A different approach was taken by [54], where they used tapping behavior
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of the user for authentication. The authors capture the user’s tapping speed,

pressure and time in order to authenticate, achieving an error rate as low as

3.65%.

Authors in [27] described an open framework for detecting and capturing user

behavior from smart meter power consumption data using the SVM model. They

managed to attain an accuracy of 94%. They used machine learning techniques

in order to capture events performed by the user, obtaining a 94% accuracy

using SVM model. Hidden Markov Model (HMM) is a very common model for

predicting user behavior and the next action to be taken. For this reason, authors

in [52] proposed an improved HMM to support people with disabilities in a smart

home environment. The authors limited the scope of their work for regulating

temperature since this is a very common task and can be very irritating for people

with disabilities. An optimal accuracy of 78% was achieved, compared to only

65% using the traditional HMM, a 13% improvement.

2.3.3 Analysis

Privacy, especially when it comes to IoT, is still an open problem with no one

size fits all. Additionally, to the best of our knowledge, a customized privacy

solution is yet to be provided. When it comes to activity recognition, most of the

conducted work focuses on recognizing simple activities. Few researchers started

to branch out and recognize application specific activities e.g. sub steps when it

comes to eating, activities in basketball etc. However, the literature still lacks a

personalized, general high level activity recognition.

For that, our work differs in three aspects: (1) The user has complete control

over his/her data, where processing is performed locally on the device. (2) an

efficient and memory friendly solution for resource constrained devices. (3) per-

sonalized machine learning model where inference runs in real time, offline and

locally on the device.
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2.4 Conclusion

In this chapter, we briefly covered the background and literature review. We’ve

covered basic concepts related to IoT, Security and Privacy, SBA-XACML and

Machine Learning. Finally we summarized the literature review related to our

research and showed existing limitations.
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Chapter 3

LP-SBA-XACML: Lightweight

Algebra based Privacy

Preserving Scheme

3.1 Introduction

We are experiencing an exponential increase in the amount of user generated

data. According to [46], 5 quintillion bytes of data are being produced every day.

Furthermore, they estimate that an entire lifetime is needed to manually analyze

the generated data of a single sensor. The sheer amount of data is huge, and

theres an urgent need to automate the process and make practical use out of it.

For that, data mining and machine learning tools are the best techniques so far

to deal with this problem. However, we must keep in mind that most of this data

is user generated, thus, it’s of high importance to protect the data and user’s

privacy.

In this chapter, we will present our work to give users some control over their

data and preserve their privacy. Section 3.2 presents an overview of our proposed

approach and architecture. Section 3.3 describes the language and the privacy

constructs. Afterwards we explain the formal semantics in Section 3.4. Finally,
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performance tests are presented in Section 3.5.

3.2 Approach Overview and Architecture

Our approach makes use of the industry standard XACML. However, it’s known

to have less than ideal performance. Despite several work done to tackle the issue

such as [18], [19], [17] and [30], they propose a major structural change in the

standard [33]. For that, we decided to go build on top of SBA-XACML due to

its compatibility with XACML and it’s fast performance.

Figure 8 illustrates the architecture of our proposed approach, which is com-

posed of three main modules: (1) Set of entities requesting access to sense data,

(2) IoT devices responsible of sensing and collecting data, and (3), LP-SBA-

XACML platform running on IoT devices to preserve the privacy of collected

data.

Figure 8: Scheme Architecture

Below is a detailed description of our proposed architecture:

1. IoT devices data collectors: Small, internet connected devices that are re-

sponsible to sense and collect sensitive data about the user and his/her

surroundings.

2. User/system application: An entity that is interested in collecting the data

from IoT devices for statistical analysis and applications.

3. LP-SBA-XACML Platform: This is the core module of our approach com-

posed of the following components:
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(a) LP-SBA-XACML language: is a semantic-based privacy-preserving

language built on top of SBA-XACML [33], which is an efficient and

compatible alternative for XACML with lighter policy evaluation mech-

anisms. Detailed description of the newly proposed constructs is pro-

vided in Section 3.3. The privacy constructs enable fine-grained to

user data based on several factors and user’s behavior.

(b) Policy Evaluation module: is responsible of loading the appropriate

policy in order to assess their content with respect to the request com-

ponents and provide the type of access decision and preserve user’s

privacy.

(c) Behavior Detection Module for Privacy Enforcement: This is tightly

integrated with the language since the evaluation is behavior oriented.

That is, the result is tightly coupled to user’s behavior. The behavior

module is responsible to infer user’s current behavior through the use of

a deep neural network implemented using the TensorFlow framework

[3]. The appropriate action is taken based on the predicted behavior.

We explain in more details about the module in Section 4.2

3.3 LP-SBA-XACML Language Description

3.3.1 LP-SBA-XACML Language Description

As mentioned earlier, LP-SBA-XACML builds on top of the SBA-XACML lan-

guage. In this section, we introduce the newly added constructs and some changes

in evaluation semantics to accommodate them. Moreover, we introduce a minor

change in the mapping of policy set, policy, and rule to LP-SBA-XACML in order

to accommodate user’s behavior.

31



New Privacy Construct

A privacy construct PC is defined as follows:

PC ::=< L,N, T,BC >

where L is a set of location constraints, N is a set of network constraints, T is a

set of time constraints, and BC is a set of defined behaviors.

More formally, a location L is defined as follows:

L = {LatLng1, LatLng2, ...LatLngn}

Similarly, a network N is defined as follows:

N = {(Type, IP −Range)1, (Type, IP −Range)2...(Type, IP −Range)n}

A time T is defined as follows:

T = {(Date−Range, T ime−Range)1, (Date−Range, T ime−Range)2...(Date−

Range, T ime−Range)n}

Finally, BC is defined as follows:

{B1, B2...Bn}

3.3.2 Policy Set

A policy set in LP-SBA-XACML is defined as follows:

PS ::=< ID, SP, PR, PCA, IPS,OBLs, PCs, TR >

The only change is the introduction of the PCs premise. Where PCs is simply

a set of privacy constructs.
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3.3.3 Policy

Similarly, a minor change has to be made at the policy level:

P ::=< ID, SR, PR,RCA,OBLs, PCs, TR >

Where a policy P can have one or more privacy constructs, thus, a set of con-

structs, PCs, is passed as parameter

3.3.4 Rule

Finally, we introduce the mapping of the rule in LP-SBA-XACML:

R ::=< ID,RC, PC, TR,RE >

Where a rule R takes a single privacy construct.

3.3.5 New Anonymous Communication Mechanisms

As mentioned earlier, our work is to preserve and customize user’s privacy. For

that, appropriate measures need to be taken to protect user’s privacy especially

between device communication. Thus, we implemented the approach proposed by

[25], a TOR based anonymous communication to secure smart home appliances.

TOR was installed and configured at the access point, so that every request

coming out of the smart home appliances will be rerouted and passed through

TOR. In our approach, TOR was installed on a smart device, and requests coming

from the IoT device would get rerouted to the smart device, and the request would

be sent by TOR. That way, we ensure private communication without exposing

the user’s identity.

The approach has been implemented as an obligation. If the user wishes to

send a request anonymously, then an obligation that does so is added. Below is

an example that demonstrates how it works:
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P ::=<

P1, R1, R1, permit− overrides, {anonymousObligation, permit, {send− anonymously, , } >

where we have a policy with PCA of permit-overrides, and an obligation

with OBLID set to anonymousObligation, with FFOn permit, and AttId set to

send-anonymously with empty DT and V. If the decision of the policy is permit,

then the obligation is fired and the method send-anonymously will take care of

rerouting the response through TOR.

Moreover, we are currently working on developing more functions to provide

the user with alternatives for anonymous communication based on the related

work in the future.

3.4 LP-SBA-XACML Formal Semantics

In this section, we represent the matching semantics for the newly proposed

privacy construct PC, as well as the newly proposed evaluation semantics for

each of the policy set, policy, and rule affected by them. Recall that the PC

contains a set of contextual constraints, defined by the user, that must be met.

For that, the PC is evaluated against the user’s device in real time. That is,

contextual data, such as time and location, will be retrieved whenever a request

is received.

First, we’ll define the matching semantics for each of the location, network,

and time premises accordingly.

Rules 1 and 2 represent the matching semantics for a location constraint L.

First, we check if there exists a location ` in the set defined by the user that is

equal to the current user location. If such an ` exists, then the location matches

to True. If, on the other hand, no such ` exists, then the location is matched to

False.

Rules 3 and 4 represent the match semantics for a network constraint n. A

network matches to true if there exists an n such that the network type equals to
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Table 1: Matching Semantics for Location

∃` ∈ L; ` = UL

< L,UL > `
match

True

(Rule 1)

∀` ∈ L; ` 6= UL

< L,UL > `
match

False

(Rule 2)

the user’s current network type i.e. work, home, cafe etc., and, the user’s current

IP belongs the set of IP-Range. If, on the other hand, no such n exists, then the

network matches to False (Rule 4). x

Table 2: Matching Semantics for Network

∃n ∈ N ;n.Type = UN.Type ∧ ∃IP ∈ n.IP Range;UN.IP = IP

< N,UN > `
match

True

(Rule 3)

∀n ∈ N ;UN.Type 6= n.Type ∨ ∀IP ∈ n.IP Range;UN.IP 6= IP

< N,UN > `
match

False

(Rule 4)

Finally, Rules 5 and 6 represent the time match semantics. If there exists a

time t such that the current time ∈ t time range and the current date ∈ t date

range, then it matches to True. Otherwise, if no such t exists, then the time

matches to False.

Once we’ve defined the matching semantics for each of the privacy premises,

we’re ready to define the semantics for the privacy construct PC. Rules 9 and

10 represent the matching semantics. If all of the premises, L, T, and N match

to true, then the PC matches to true as well. If, on the other hand, any of the

premises does not match to true, then PC matches to false
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Table 3: Matching Semantics for Time

∃t ∈ T ;UT.D ∈ t.DR ∧ ∃T ∈ t.TR;UT.T = T

< T,UT > `
match

True

(Rule 5)

∀t ∈ T ;UT.D 6∈ t.DR ∨ ∀T ∈ t.TR;UT.T 6= T

< T,UT > `
match

False

(Rule 6)

Table 4: Evaluation Semantics for PRIV CONST

(L `
match

True) ∧ (N `
match

True) ∧ (T `
match

True) ∧ (BC `
match

True)

< PRIV CONS,R > −→
eval

PermitObl

(Rule 9)

(L `
match

False) ∨ (N `
match

False) ∨ (T `
match

False) ∨ (BC `
match

False)

< PRIV CONS,R > −→
eval

Deny

(Rule 10)

3.4.1 Rule Evaluation

The evaluation semantics for the rule in LP-SBA-XACML for a request Rq are

presented in this section.

The rules 11, 12, and 13 in table 5 represent the evaluation semantics of a

rule at the policy level. A rule R is evaluated to permit (Rule 11) if the target

matches against the request, rule condition is true, and the privacy construct PC

evaluates to permit. On the other hand, a rule evaluates to deny (Rule 12) if the

same conditions hold, having the rule effect to Deny. Finally, a rule is evaluated

to NotApplicable (Rule 13) if the target does not match, or if the rule condition

is false, or if the privacy construct evaluates to deny.

[h]
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Table 5: Evaluation Semantics of a Policy Rule

(< TR,Rq > `
match

True) ∧ (RC = True) ∧ (PC−→
eval

PermitObl) ∧ (RE = Permit)

< R,Rq > −→
eval

Permit

(Rule 11)

(< TR,Rq > `
match

True) ∧ (RC = True) ∧ (PC−→
eval

PermitObl) ∧ (RE = Deny)

< R,Rq > −→
eval

Deny

(Rule 12)

(< TR,Rq > `
match

False) ∨ (RC = False) ∨ (PC−→
eval

Deny)

< R,Rq > −→
eval

NotApplicable

(Rule 13)

3.4.2 Policy Evaluation Semantics

The evaluation semantics for the policy in LP-SBA-XACML for a request Rq are

presented in this section.

Rule 14, 15 and 16 presented in table 6 show the evaluation semantics of a

policy with a rule combining algorithm (RCA) set to permit-overrides. Note that

for RCA deny-overrides, the same semantics apply.

A policy is evaluated to permit (Rule 14) if the target matches, and if there

exists a rule that evaluates to permit, and if every privacy construct evaluates

to permit as well. On the other hand, a policy is evaluated to deny (Rule 15)

if the target matches, if all of the rules evaluates to deny, and all the privacy

constructs evaluate to permit. Finally, a policy evaluates to NotApplicable if the

target does not match, or there exists a rule that evaluates to NotApplicable, or

if there exists a privacy construct that evaluates to deny.

3.4.3 Policy Set Evaluation

The policy set evaluation semantics against a request Rq are represented in this

section.

Rules 17, 18 and 19, presented in table 7 illustrate the evaluation for a policy

set with policy combining algorithm (PCA) set to Permit-Overrides. A policy
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Table 6: Evaluation Semantics of a Policy where (RCA=Permit-Overrides)

(RCA = Permit−Overrides) ∧

(< TR,Rq > `
match

True) ∧ (∃R ∈ SR;< R,Rq > −→
eval

Permit) ∧ (∀pc ∈ PCs; pc−→
eval

PermitObl)

< P,Rq > −→
eval

Permit,OBLs

(Rule 14)

(RCA = Permit−Overrides) ∧

(< TR,Rq > `
match

True) ∧ (∀R ∈ SR;< R,Rq > −→
eval

Deny) ∧ (∀pc ∈ PCs; pc−→
eval

PermitObl)

< P,Rq > −→
eval

Deny,OBLs

(Rule 15)

(RCA = Permit−Overrides) ∧

((< TR,Rq > `
match

False) ∨ (∀R ∈ SR;< R,Rq > −→
eval

NotApplicable)) ∨ (∃pc ∈ PCs; pc−→
eval

Deny)

< P,Rq > −→
eval

NotApplicable

(Rule 16)

set evaluates to permit (Rule 17) if the target matches, there exists a policy that

evaluates to permit, and all of the privacy constructs evaluate to permit as well.

On the other hand, a policy set evaluates to deny if the target matches, all of the

policies evaluate to deny, and all of the privacy constructs evaluate to permit.

Finally, a policy set evaluates to NotApplicable if the target does not match, or

there exists a policy where it evaluates to NotApplicable, or there exists a privacy

construct that evaluates to deny.

Table 7: Evaluation Semantics of a PolicySet where (PCA=Permit-Overrides)

(PCA = Permit−Overrides) ∧

(< TR,Rq > `
match

True) ∧ (∃P ∈ SP ;< P,Rq > −→
eval

Permit) ∧ (∀pc ∈ PCs; pc−→
eval

PermitObl))

< PS,Rq > −→
eval

Permit,OBLs

(Rule 17)

(PCA = Permit−Overrides) ∧

(< TR,Rq > `
match

True) ∧ (∀P ∈ SP ;< P,Rq > −→
eval

Deny) ∧ (∀pc ∈ PCs; pc−→
eval

PermitObl)

< PS,Rq > −→
eval

Deny,OBLs

(Rule 18)

(PCA = Permit−Overrides) ∧

((< TR,Rq > `
match

False) ∨ (∀P ∈ SP ;< P,Rq > −→
eval

NotApplicable)) ∨ (∃pc ∈ PCs; pc−→
eval

Deny)

< PS,Rq > −→
eval

NotApplicable

(Rule 19)
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3.5 Performance Evaluation

In this section, we explore the performance tests in terms of time and memory

usage for LP-SBA-XACML with respect to the standard policy-based approach

XACML. The experiments were conducted on two devices: Macbook Air, 2.2GHz

Intel core i7 with 8GB of RAM and Galaxy S3 with 1GB of RAM.

In order to test XACML, we used the open source Balana implementation

[2], which builds on top of Sun’s implementation and adds support to the latest

version of XACML 3. Additionally, we’ve ported the library on Android in order

to run it on S3. It’s important to note that not all of the methods we’ve used

in LP-SBA-XACML are already existing in XACML. In this regards, we have

developed the corresponding functions and integrated them in the ported XACML

platform.

The experiments were conducted on real-world and synthetic policies in order

to show performance on small and large scale policies. Synethetic policy sets are

created such that every policy and rule in the set needs to be evaluated in order

to reach a final decision. The size of policy sets ranges from 100 to 4000 rules

in order to show the scalability and performance on varying policy sizes, where

rules are evenly split over the policies. In order to force an exhaustive evaluation

of the policy set, we specified a (1) policy combining algorithm Deny-Overrides,

(2) a rule combining algorithm Deny-Overrides has been set for each policy, (3)

every rule in the policy has a permit of Deny and finally (4) a non empty target

is set. Comparisons have been made between XACML and P-SBA-XACML in

terms of time and memory usage, where each test was performed ten times to get

the average.

Figure 9 summarizes the execution time of XACML and LP-SBA-XACML on

desktop, and shows that our approach is orders of magnitude faster than XACML.

LP-SBA-XACML is 3.5-13 times faster compared to XACML, depending on the

policy size. Figure 10 summarizes execution time on mobile S3. Again, LP-SBA-

XACML is consistently faster. LP-SBA-XACML is 2-4 times faster depending
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on the size of the policy. Figure 11 summarizes memory consumption of both

approaches where LP-SBA-XACML consumes 2-22 times less memory.

Moreover, table 8 summarizes the execution time of real world policies run

on desktop. The obtained results show our approach to be 7.5-30 times faster,

depending on the size of the policies. Table 9 shows the results on mobile, where

our approach is 12-28 times faster than XACML. Finally, we we measured memory

consumption of real life policies shown in table 10. The obtained results show

the memory consumption on mobile where LP-SBA-XACML consumes 44.8-48.8

times less memory. When it comes to memory consumption on Android, you

should take into consideration that an application is sandboxed and is given a

limited amount of memory that it can consume. And if an application tries

to exceed that limit, either the garbage collector (GC) gets called to free some

memory, or the app fails. Frequent GC calls lead to higher CPU and energy

usage, leading to a faster deplete in battery. In our case, when testing XACML

on S3, GC was frequently called regardless of the policy size in order to free

memory. This shows serious memory limitations when it comes to the usage of

XACML on a resource constrained devices.

Figure 9: Performance results on desktop
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Figure 10: Performance results on mobile

Figure 11: Memory consumption comparison

Table 8: Results of real-world XACML policies on desktop

Number
of Rules

XACML
PL-

SBA-
XACML

2 6 0.2
4 10 0.4
8 14 2.2
16 30 4

Table 9: Results of real-world XACML policies on S3

Number
of Rules

XACML
PL-

SBA-
XACML

2 13 0.9
4 15 1.3
8 20 1.7
16 54 1.9
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Table 10: Memory consumption of real-world XACML policies on S3

Number
of Rules

XACML
PL-

SBA-
XACML

2 11.2 0.25
4 11.4 0.25
8 11.7 0.25
16 12.2 0.25

3.6 Conclusion

In this chapter, we addressed the privacy issue that users of IoT devices experi-

ence and proposed our privacy constructs that give control back to users. The

proposed privacy constructs allow users to set rules and restrictions on when

data can be collected. Moreover, we showed performance results of our approach

compared to the industry standard XACML in terms of running time and mem-

ory consumption. Our approach performed 2-4 times better on constrained device

than XACML, whereas in terms of memory consumption, our approach consumed

2-22 times less memory. These results might vary based on policy size and device

type
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Chapter 4

Deep Learning-based Approach

for Activity Recognition and

Privacy Customization

4.1 Introduction

In the previous chapter, we’ve demonstrated the privacy constructs that enable

users to control under what conditions their data can be collected. In this chapter,

we expand on our previous work to include an intelligent behavior detection

model, in which the decision to share private data is determined based on the

user’s current behavior. In Section 4.2, we elaborate on the process of building

our model. Section 4.4 we demonstrate an illustrative scenario and case study.

Finally, performance results are shown in Section 4.5.

4.2 Behavior Model Overview

In this section, we introduce our intelligent behavior evaluation module. We

explain the steps taken in order to build the model as well as how it integrates

with LP-SBA-XACML.

Figure 12 shows the architecture for implementing a personalized machine
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Figure 12: Machine Learning Architecture

learning model.

• Data collection: An android application was created in order to collect the

necessary data. The most important features of the collected data are the

activity e.g. walking sitting etc. and context such as time and location. The

developed application runs in the background without any user interference

and collects a record of data every 5 seconds.

• Data Labelling: Upon extracting the text file, we had perform some pre-

processing and data labeling. The preprocessing phase was fairly simple,

we removed missing records (these were relatively few and do not affect

the distribution of the data) and extracted additional useful features such

as determining if the current day is a weekend or not (users behave differ-

ently on their day off). Finally, since our approach is based on supervised

machine learning, the dataset had to be manually labelled. In order to

manually infer the behavior, the activity of the user combined with context

data result in a high level overview about the current behavior. Moreover,

analysis of the activity changes over a period of time had to be performed

in order to accurately label the data. For example, if the user was sitting,
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then walked, then was sitting again, the behavior should be considered the

same. This sequencing is important since a record by itself is not enough

in order to infer behavior. A summary of the labels is defined in table 1

• Model training: Upon having clean and labeled data, we are ready to create

our model. As mentioned earlier, Google’s TensorFlow framework was used

in order to implement a deep neural network. In order to train the model,

the standard train/test split cross validation. Which is a technique that

splits the data into training and testing sets. A common practice is to

divide the dataset into 80/20, where 80% of the data is used for training

and 20% for testing. Finally, during training, cross-validation was used.

That is, during each iteration, the model was tested in order to get an

overview of how it’s performing as it progresses.

• Model testing: Since the data was split into train and test sets, the re-

maining 20% of data is used in order to evaluate the model’s performance.

There are several ways to evaluate how a model performs, and one of the

most common used metrics is accuracy. For that, our model achieved 90%

accuracy on the new unseen test data.

• Model export: After training and testing the model, it’s time to export it

in order to test it in real-world environment.

• On-Device Model Execution: Once the model was exported, we had to build

a sample application that will run the TensorFlow model, collect data in real

time, feed the data to he model, and display the output. We’ve tested the

model in the real world in order to get a general idea of how it’s performing.

The model was successful in accurately inferring our current behavior in

real-time. When driving, the model was able to differentiate whether the

behavior was commute to work, commute home or outing, thanks to the

activity (driving) and to the collected context data (time, location, type of

day).
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The model was implemented using the TensorFlow framework. [3], which is an

open source deep neural network framework implemented by Google. TensorFlow

models can run on wide array of devices from servers all the way down to mobile

and IoT devices.

Table 1: Labels and record count

Label Number of records
commute to work 1182
grocery shopping 385
gym 4125
home 27165
outing 5850
sleeping 15567
walk break 5582
walk gym 1079
walk home 1099
work 23364

4.3 Formal Semantics for Behavior Construct

In this section, we present the formal semantics for our behavior construct.

Rules 7 and 8 represent the matching semantics for BC. Simply put, if the

user’s current behavior (which is inferred using our machine learning model), ∈

to the set of defined behaviors (BC), then BC matches to true. If, on the other

hand, the inferred behavior does 6∈ to the set, then BC matches to false.

The method PRED BEH() is a function that takes as parameters location,

time, network, user activity, and additional features. The method communicates

with the behavior module, passing all the necessary parameters in order to infer

the user’s current behavior. Finally, once the behavior is inferred, the method

returns the value and the necessary comparisons are made in order to properly

reach a decision.

The formal semantics for PRED BEH() are defined as follows:
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{PRED BEH, {Location, T ime,Network, UserActivity}}

Where PRED BEH() is the name of the method to be called, followed by

the list of parameters. The model and algorithm are presented in Section 4.2

Table 2: Matching Semantics for Behavior

∃beh ∈ BC;PRED BEH() = beh

< B,BC > `
match

True

(Rule 7)

∀beh ∈ BC;PRED BEH() 6= beh

< B,BC > `
match

False

(Rule 8)

4.3.1 Integrating Behavior Semantics in Privacy Construct

Finally, we integrate the newly proposed behavior semantics into our privacy

construct as follows:

Table 3: Evaluation Semantics for PRIV CONST

(L `
match

True) ∧ (N `
match

True) ∧ (T `
match

True) ∧ (BC `
match

True)

< PRIV CONS,R > −→
eval

PermitObl

(Rule 9)

(L `
match

False) ∨ (N `
match

False) ∨ (T `
match

False) ∨ (BC `
match

False)

< PRIV CONS,R > −→
eval

Deny

(Rule 10)

Where in order for PC to evaluate to PermitObl, all of the premises, T, L, N

and BC (behavior condition) must evaluate to true. If, on the other hand, any of
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the premises matches to false, then PC would evaluate to Deny We note that the

evaluation semantics for the policy and rule are not affected by this alteration.

4.4 Illustrative Scenario and Case Study

In this section, we present two practical applications for our work:

• Automated Privacy Management: Usage of private data and resources are

dynamically managed depending on the user’s current behavior.

• Service Management: Services can subscribe to a particular behavior such

that, upon the defined behavior is detected, the service is automatically

launched.

4.4.1 Automated Privacy Management

Consider the following scenario:

• Operations on sensitive data are prohibited whenever the user is at work

• Operations on sensitive data during weekend are permitted.

• Location cannot be shared if the behavior is one of the following: com-

mute to work, work, walk break. Such a policy is of high importance for

confidential locations such as a military base.

• Allow location tracking during weekends

• Block camera at work premise

• Access camera when open and location type is museum

• Audio control is permitted if the detected behavior is commute to work

• Phone calls, messages and audio services are blocked when the user is sleep-

ing.
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Listing 4.1 represents the corresponding LP-SBA-XACML code to enforce the

mentioned requirements.

Listing 4.1: LP-SBA-XACML for Accessing IoT data
[1]. PS::=<PS ,{PData ,PLocation ,PGeneral},{PData >PLocation >PGeneral},{deny -

overrides },{},{},{{},{},{}}>

[2]. P::=<PData ,{RWork ,RWeekend },{RWork >RWeekend},{deny -overrides

},{{},{},{}}>

[3]. R::=<RWeekend ,{{infer -behavior , {is-weekend }}} ,{{} ,{} ,{}} ,{ permit}>

[4]. R::=<RData ,{{infer -behavior , {is -work }}} ,{{} ,{} ,{}} ,{ deny}>

[5]. P::=<PLocation ,{LShare ,LTrack},{LShare >LTrack},{deny -overrides

},{},{},{{},{},{}}>

[6]. L::=<LShare ,{{infer -behavior , {work }}} ,{{} ,{} ,{}} ,{ deny}>

[7]. L::=<LTrack ,{infer -behavior},{is-weekend},{permit },{{},{},{}}>

[8]. P::=<PCamera ,{RBlock ,RAR},{RBlock >RAR},{deny -overrides },{{},{},{}}>

[9]. R::=<RBlock ,{{infer -behavior , {work }}},{ deny },{{},{},{}}>

[10]. R::=<RAR ,{infer -behavior ,{ museum }} ,{{},{} ,{}} ,{ permit}>

[11]. P::=<PAudio ,{RSleep ,RAudio},{RSleep >RAudio},{deny -overrides },{{},{},{

}}>

[12]. R::=<RSleep ,{infer -behavior ,{is -sleeping }},{{} ,{},{}},{ permit}>

[13]. R::=<RAudio ,{infer -behavior ,{commute -to -work }},{{},{},{}},{ permit}>

Line 1 corresponds to the policy set, PS, containing three policies: PData,

PLocation and PAudio. PData has the highest precedence order followed by

PLocation and finally PAudio. There are no obligations for PS and an empty

target. Line 2 is the first policy, PData, which is composed of two rules: RWork

and RWeekend, where RWork has a higher precedence order than RWeekend.

PData has a rule-combining algorithm set to deny-overrides and an empty target.

Line 3 is the first rule, RWeekend, which enforces user’s requirement of sharing

possible sensitive resources, regardless of the behavior, as long as it’s during the

weekend. The following rule condition has been set:

{infer − behavior, {is− weeeknd}}

Where the method infer-behavior gets called, sends a request to the behavior

application, where the model executes and infers user’s current behavior in real

time. Note, however, that if the user happens to be at work, that is, the inferred

behavior is work, even during weekend, the rule will not be enforced. Finally,

we have the rule effect set to permit. Line 4 is the rule that restricts access to

sensitive information whenever the user’s behavior is: work, commute to work,

walk break. The following rule condition is set in order to achieve the desired
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result:

{infer − behavior, {is− work}}

Where infer-behavior is the same method used before, however, we pass an ad-

ditional parameter is-work, so that the method would check for that particular

type of behavior. In case the inferred behavior matches with the condition, then

the rule is enforced and a deny effect is returned.

Line 5 is a new policy for location, having PLocation as ID. The policy is

composed of two rules: LShare and LTrack with LShare having a higher prece-

dence order. The rule combining algorithm has been set to deny-overrides and

an empty target.

Line 6 is the location rule that enforces the condition of location sharing,

having the location condition set to:

{infer − behavior, {is− work}}

Where the method infer-behavior is the same as before, however, the additional

parameter, is-work, is passed in order to detect all work-related behaviors. In case

the condition is met, then a deny effect is returned. Line 7 is another location rule,

LTrack, that enabled tracking of user location based on the following condition:

{infer − behavior, {is− weekend}}

Where location tracking is enabled during weekend and a permit effect is returned.

Note, however, similar to before, if the inferred behavior is work even during

weekend, then the condition is no longer valid.

Line 8 is the policy for camera, PCamera, composed of two rules: RBlock and

RAR, where RBlock has a higher precednce order. A rule combining algorithm

of deny-overrides is set and an empty target. Line 9 is the RBlock rule, which re-

stricts camera usage whenever the user is within the work premise. The following
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rule condition has been set:

{infer − behavior, {camera− work}}

Where infer-behavior is the same method mentioned earlier. In this case, the

parameter camera-work is passed. In case any work-related behavior has been

inferred, then the condition is met, and a deny effect takes place.

Line 10 is the RAR rule, which is rule for augmented reality (AR). Camera

usage is granted if the user opens the camera and the location that s/he is at is

a museum. In this rule, a service provides additional information and guidance

within the museum. The following condition has been set to enforce such a rule:

{infer − behavior, {museum}}

Where the parameter museum is passed as context information. If the condi-

tion has been met, then a permit effect is returned and the AR service is provided

to the user. Note that whenever the user exits the museum, even if the camera

is still open, the provided service is killed immediately.

Line 11 is the final policy, PAudio, for managing audio related functionalities.

PAudio is composed of two rules: RSleep and RAudio, with RSleep having a

higher precedence order. Finally, the rule combining algorithm is set to deny-

overrides and an empty target. Line 12 is the rule RSleep that enforces the ”do

not disturb” functionality when the user is sleeping. The following condition has

been set to:

{infer − behavior, {is− sleeping}}

Where the parameter is-sleeping is passed. In case the condition is met, a

permit effect is returned and the service provides the necessary functionalities.

Note that once the behavior changes, the service no longer functions.

Finally, line 13 is the last rule, RAudio, that controls audio functionality on
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the device whenever the user is commuting to work. The following condition has

been set:

{infer − behavior, {commute− to− work}}

Where the parameter commute-to-work is passed. If the condition is met,

then a permit effect is returned. Otherwise, the service will not function.

4.4.2 Service Management

The user is provided with a list of services, and the user selects which service

”binds” to a particular behavior. That is, the service will be called and activated

once the selected behavior is detected. In this case, service providers work nor-

mally, however, the user can customize the usage of the service. Additionally,

the service cannot detect when it is launched, that is, which behavior is this ser-

vice selected for. That way, the privacy of the user is maintained. Consider the

following services that wish to register on the user’s device:

• S1: Song management that is activated whenever user behavior is ”gym”

or ”commute to work”

• S2: Location tracking that is activated during weekend, regardless of the

behavior

• S3: Phone call behavior tracking, activated whenever a call is made or

received, as long as user is not at work.

• S4: Do not disturb mode when user is busy at work (10-12, 2-3). This

service would block all phone calls and messages depending on the time the

user is ”busy” and automatically stops soon after.

A list of services is displayed to the user, upon selecting one, a detailed page

consisting of sub services (if any) is displayed so that the user can customize its

usage based on his/her behavior. As mentioned earlier, the service provider is
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not aware of how the service is used, that is, the mapping between the service

and the behavior is known only to the user. That way, privacy is maintained

without any information leakage. Figure 13 shows a sample application, where

the user matches a service with one or more behavior. Thus, once the behavior

is detected, the service is automatically launched.

Figure 13: Behavior Based Service Management

4.5 Experiments and Analysis

In this section, we demonstrate performance tests in order to evaluate how well

our model performs. The section is divided into two broad categories: (1) An

overview of our TensorFlow model and (2) Performance tests where we show the

time taken to infer user’s behavior in real time against a request.

4.5.1 TensorFlow Model Overview

This section explores:

• Dataset
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• TensorFlow model

• Model performance on mobile

Dataset Overview

Table 1 displays the defined behaviors and the record count for each. In general,

the more data we have for each record, the better the model will be at accurately

inferring the correct behavior. However, since data collection was performed in,

mostly, an uncontrolled environment, it is nearly impossible to evenly collect

records for different behaviors.

Model Overview

The structure of our neural network is as follows:

• Input layer: In this layer, the number of neurons must match the number

of features. Therefore, the number of neurons was set to 9

• Hidden layer/s: There isn’t a specific rule as to how many hidden layers to

have, as well as number of nodes. After several trials, we found that one

hidden layer with nine neurons gave the best result. Finally, the Rectified

Linear Unit (ReLU) was used as an activation function.

• Output layer: The number of neurons in this layer is equivalent to the

number of labels, which is 10, using Softmax activation function.

Additional parameters need to be set in a neural network:

• Optimizer: Adam

• Metrics: Accuracy

• Loss function: Sparse categorical cross entropy

• Learning rate: 0.0001
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• Epochs: Number of iterations to be made, our model was found to converge

at 1000 epochs.

• Batch size: This parameter depends on how powerful your machine is.

Usually, the higher the batch size the faster it is to train the model. On

our machine, batch size of 2048 was found to be optimal.

Figure 14: Accuracy

Figure 15: Loss

Figure 16: Validation Accuracy
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Figure 17: Validation Loss

The data was split 80-20, 80 for training and 20 for testing. When training

the model, upon the completion of each epoch, cross validation was made in order

to get an overview how the model is performing.

Upon checking figure 14, it can be seen that the model’s accuracy continuously

increases, with few ”bumps” at 200-300 epochs. Afterwards it steadily improves

until hitting a plateua, reaching 90% accuracy. Increasing the number of epochs

at this stage might yield to better results in terms of accuracy, however, you risk

overfitting the model. You want the model to capture the ”trend” and pattern

of the data in order to generalize well.

Similarly, figure 16, which shows the curve for validation accuracy, shows

similar results. This indicates that the model manages to generalize in each

epoch.

Figure 15, which displays the model loss. Recall that the used loss function is

sparse categorical cross entropy. From the figure, it shows the gradual decrease of

loss with each iteration. Notice that there is no ”steep” decline, indicating that

the model is incrementally improving. Finally, as with accuracy, the loss reaches

a plateau at the end of iterations. The same loss results occur for validation,

shown in figure 17.

4.5.2 Performance Tests

Table 4 summarizes performance runs performed on Samsung Galaxy S8. The

tests were performed as follows:
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Table 4: TensorFlow Performance Runs on S8

Number of predictions Time(ms)
100 14.45
200 22.43
300 33.22
400 40.34
800 69.58
1200 103.1
1600 132.38
2000 164.62
2400 188.53
2800 226.22
3200 260.14
3600 292.28
4000 321.4

We simulated x number of requests, and for each request, we make an inference

on a test record. The results show that the model scales well up to 4000 requests,

where it requires approximately 320ms. Considering the type of application for

such a model, it’s highly unreasonable to receive such high number of requests.

Furthermore, performance can be drastically improved by implementing one of

the following approaches:

• Parallelization: We can create a ThreadPool composed of ten threads, and

divide the number of requests evenly among the created threads. Theoret-

ically, this should drastically improve performance, ideally up to ten fold.

• Periodic predictions: A prediction is performed once every 5 seconds. Thus,

regardless how many requests are received, the same behavior is used.

Thereby drastically reducing the number of inferences performed. Once

a request is received after a duration longer than 5 seconds, a new inference

is performed.

For the current application, the performance is more than acceptable, espe-

cially when considering the unlikeliness of receiving 100 requests (which requires

14.45ms). Creating a TensorFlow model and running it on mobile is not enough,
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it is of high importance to take into considerations the complexity of the gener-

ated model. In our scenario, the generated model is 2KB in size, which is feasible

to run on almost any resource constrained device. Additionally, only 9 param-

eters/features are required to make an inference. The simplicity of the model

coupled with the small size makes it ideal for integration in IoT applications.

4.6 Conclusion

In this chapter, we presented our intelligent behavior detection model and how it

seamlessly integrates with our privacy policy language. Moreover, we explained

how the model was implemented using the TensorFlow framework and performed

synthetic and real life experiments to evaluate the performance of our model. Our

model achieved an accuracy of 90% for inferring user’s behavior. The accuracy

can be improved if we have more participants and more labelled data. Moreover,

our model runs in real time and offline on a resource constrained device. Added

to that the small size of the model (2KB), and performing upto 4000 predictions

in 321.4 ms, makes the model practical to run on IoT devices with reasonable

perofrmance and accuracy.
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Chapter 5

Conclusion

In this thesis, we built a lightweight privacy policy language on top of the work

done by [33] in order to provide users with personalized privacy in the IoT era.

Moreover, we demonstrated performance results on desktop and resource con-

strained device and achieved a reasonable performance in terms of time and

memory, making it practical to run on IoT devices. Finally, we implemented

a smart behavior detect module using the TensorFlow framework to infer user’s

behavior in real time, and integrated user’s behavior with the privacy policies.

That way, the condition and constraint in which data is shared is dependent on

the user’s context and behavior. Finally, synthetic and real world experiments

were conducted to show the feasibility of our results.

Based on our attained results, we can branch in several directions for future

work. First obvious route is to collect more data from a diverse set of users, we can

also try different machine learning algorithms or creating an ensemble algorithm

to achieve a better and more accurate result. Moreover, we can identify users

based on their behavior and detect anomalies i.e. user’s behavior does not match

with his/her history. Another possible direction is creating specialized models

for specific domains such as banking to monitor employee behavior with minimal

intrusiveness. Healthcare is another possibility in which we have a model that

monitors users vital signs and recommend a medical advice when some threshold

is exceeded. We can even build several sub low level behavior detection models,
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and stack on top of them our high level model to infer broader and more accurate

behavior.

60
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The following list of publications has been derived from the current thesis work:

5.1.1 Conference

• Mohamad Chehab and Azzam Mourad. ”Towards a Lightweight Policy-

Based Privacy Enforcing Approach for IoT”. In the Proceedings in The

International Conference on Computational Science and Computational In-

telligence, Las Vegas, Nevada, USA.

5.1.2 Draft

• Mohamad Chehab and Azzam Mourad. ”Inteligent Behavior Aware User

Controlled Privacy for IoT”.
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