

 Lebanese American University Repository (LAUR)

Conference

Publication metadata

Title: Model‐driven specification and design‐level analysis of XACML policies

Author(s): Hanine Tout; Azzam Mourad; Chamseddine Talhi

Conference title Second International Conference on Next Generation Computing and

Communication Technologies (ICNGCCT 2015)

DOI: http://dx.doi.org/10.13140/RG.2.1.2573.6167

Handle: http://hdl.handle.net/10725/12115

How to cite this post‐print from LAUR:

Tout, H., Mourad, A., & Talhi, C. (2015). Model‐driven specification and design‐level analysis of

XACML policies. In Second International Conference on Next Generation Computing and

Communication Technologies (ICNGCCT 2015). DOI, 10.13140/RG.2.1.2573.6167,

http://hdl.handle.net/10725/12115

 Year 2015

This Open Access post‐print is licensed under a Creative Commons Attribution‐Non Commercial‐No Derivatives

(CC‐BY‐NC‐ND 4.0)

This paper is posted at LAU Repository
 For more information, please contact: archives@lau.edu.lb

Model-Driven Specification and Design-Level
Analysis of XACML Policies

Hanine Tout, Azzam Mourad
Department of Computer Science and Mathematics

Lebanese American University
Beirut, Lebanon

{hanine.tout, azzam.mourad}@lau.edu.lb

Hadi Otrok
Department of Computer Engineering

Khalifa University
Abu Dhabi, UAE

hadi.otrok@kustar.ac.ae

Chamseddine Talhi
Department of Software Engineering and IT

École De Technologie Supérieure
Montreal, Canada

chamseddine.talhi@etsmtl.ca

Hamdi Yahyaoui
Department of Computer Science

Kuwait University
Safat, Kuwait

hamdi@cs.ku.edu.kw

Abstract— Throughout the recent years, Web services security
has been the target of many researchers. Particularly, by
integrating policies and rules to govern the Web services
behaviors at runtime, researchers have been able to prove the
capability of policy languages in enforcing Web services security.
XACML or eXtensible Access Control Markup Language is one
of the most widely adopted security standards for controlling
access to individual and between composed services based on
policies specifications. However, like any other policy language,
XACML policies are specified in structural files with complex
syntax, which makes the policies specification process both, time
consuming and error prone. Moreover, security policies are
commonly verified in an afterthought stage after their
enforcement, yet with diversity of rules and conditions specified
in the policies, hidden conflicts, redundancies and access flaws
are more likely to arise, which expose the system to serious
vulnerabilities at execution time. To address these problems, we
propose in this paper a novel approach that allows high-level
specification of XACML security policies and provides design-
level analysis to detect problems and vulnerabilities in the
policies semantics, a priori to their integration and execution in
the system.

Index Terms—Web Services Security, XACML, Security
Policies, Model-Driven Specification, Design-Level Analysis.

I. INTRODUCTION
Managing Web services security by policies enforcement

has become one of the most active research areas. XACML [1]
or eXtensible Access Control Markup Language is one of the
most widely adopted security standards for controlling access
to individual and between composed services based on policies
specifications. However, like any other policy language,
XACML policies are specified in structured files of too low
and complex syntax, which makes them hard to be used by
wide spectrum of users who are accustomed to work with
abstract architectural system models. In addition, this also
makes the policies definition process time consuming, and

foremost error-prone, especially when combining many
policies, rules and conditions to govern the system. In this
context, several researchers [2, 3, 4] have proposed UML
profiles to offer high-level graphical modeling approach for
policies specification. UML profile [5] is one of the UML
extension mechanisms that allows UML models to be
customized for specific domains, and these approaches have
proved its capabilities to define different access control
models. Yet, the proposed profiles in these approaches [3, 4]
do not cover all the elements of XACML policies and most
importantly, they rely on XACML 2.0, which is not the latest
version of XACML.

Moreover, with diversity of rules and conditions specified
in complex policies, hidden conflicts, redundancies and access
flaws are more likely to arise. A conflict between two policy
rules arises when they are defined in a way that one of them
grants access and the other denies access for the same set of
subject(s), resource(s) and action(s). Whereas, two policy rules
are redundant when they are defined for the same set of
subject(s), resource(s), action(s) and the same set of conditions,
with same effect (i.e., deny or permit). Finally, access flaws are
badly defined rules and/or policies which allow users to gain
accidental access to particular resources. An afterthought
analysis of policies after their integration, increases the
possibility to propagate these issues through the system
deployment where locating and resolving them will be
impossible. In this context, different approaches [6, 7, 8] have
proposed analysis mechanisms for XACML policies. Yet, these
approaches miss important elements in XACML, disregard
some of these serious issues, and more importantly none of the
proposed analysis mechanisms is applied at the design level,
where only the evaluation of policies has been presented [9,
10].

To address all these problems, we present in this paper a
novel approach that consists of UML profile to allow high-
level, straightforward, visualized specification of standard

XACML policies conforming with the latest language version,
and design-level analysis to detect problems like conflicts and
redundancies and other vulnerabilities as access flaws in the
policies semantics, at design level, a priori to their integration
and execution in the system.

The main contributions of this work are twofold:
 UML profile for the latest version of XACML to

provide high-level specification of security policies.
 Design-level analysis to detect problems and

vulnerabilities like conflicts, redundancies, and access
flaws in the policies semantics.

The rest of the paper is organized as follows. Section II
presents an overview about the proposed approach architecture,
illustrates the proposed UML profile and introduces the design
level analysis of policies semantics. Section III demonstrates
the feasibility and efficiency of our proposition through a case
study. In Section IV, we discuss existing relevant works in the
literature to distinguish and shed the light on our contributions.
Finally, in Section V, we conclude the paper and draw some
future research directions.

II. PROPOSED APPROACH
The proposed approach architecture is depicted in Fig. 1.

We introduce first a UML profile for high-level policies
specification of policies, as an alternative to the XML-
structured files of XACML. The proposed profile captures all
the elements of the latest version of this language (i.e., Policy
set, policy, rule, target, combining algorithms, condition,
obligation and advice). To specify security policies, users
create a UML model and then apply the proposed profile on it
by attaching stereotypes, parameterized by tagged values, to
the UML elements in the model (M). Using our XACML
model to sets converter, the corresponding sets are generated
then conveyed to the analyzer. In the latter, we implement
algorithms capable of detecting problems and vulnerabilities
like conflicts, redundancies and access flaws in the policies
semantics at the model level, preventing the integration of such
problems in the system at runtime. The analyzer generates a
detailed report indicating the problems in case any of them
exists, and locating the policies and rules behind them.

Fig. 1. Approach Architecture

Based on the report, the user updates the model (M*) for
reanalysis. Once the policies model is proved to be flawless, its

corresponding XACML code can be automatically generated
using our XACML generator, and finally flawless policies can
be applied on to control access whether to individual Web
services or even to Web services composition. It’s worth
mentioning that since the detection is done at the design level,
i.e., offline, before the policies enforcement and Web services
execution, the proposed analysis do not entail any overhead at
runtime.

A. UML Profile for XACML Policies Specification
In the sequel, we interpret the elements of our proposed

profile illustrated in Fig. 2. To remove any ambiguity, we used
as much as possible the same names of the elements in the
XACML language. We define the appropriate stereotypes,
tagged definitions, operations and enumerations to cover all the
elements of the latest version of XACML 3.0 that includes new
elements and definition capabilities over its predecessor. A
PolicySet, which extends the Metaclass Class, is a container of
one or many Policies, and has an identifier ID, a policy
proceeding order PPO that determines the order between these
policies, and one of the policies combining algorithms PCA
(i.e., Permit-overrides, Deny-overrides, First-applicable, Only-
one-applicable). These algorithms are used in XACML to
resolve decision application problems between policies.

 Having its own identifier ID, a Policy, may include many
Rules with precedence order among them RPO and one of the
rule combining algorithms RCA (i.e., Permit-overrides, Deny-
overrides, First-applicable) to resolve decision problems
between its rules. Each rule can have a Condition, which is a
function that should be validated before applying the rule.

PolicySet, Policy, and Rule can be all associated with
Targets, Obligations and Advices. A Target identifies the
action that a subject can exercise on certain resource, where in
our case the action is an invoke and the resource is a service
offered by partner Web service. The Obligation is a an action
to be taken Operation(params) when certain trigger condition
TriggerCond is met, which is the rule effect (i.e., Permit or
Deny). Finally, the Advice an analogous Obligation, yet its
common use is to explain why someone was denied access to
certain resource.

B. Design-Level Analysis of XACML Policies
Before starting the analysis, the XACML model to sets

generator takes the policies UML model defined by the user
after applying the proposed profile, and then parses the
elements in the model and generates the appropriate sets. These
sets form the input to the analysis algorithms capable of
detecting conflicts, access flaws and redundancies in the design
model. They are defined as follows:

PS = {ID, SOP, PPO, PCA, OBLs, ADs, TAR}

The first generated set is the policy set PS, it includes its
identifier ID, references to the set of policies it contains SOP,
the order between the policies PPO, the combing algorithm
PCA, sets of obligations OBLs and Advices ADs if any, and
finally the target TAR defined as another set of subject S,
resource RES and action A.

Fig. 2. XACML-UML Profile
TAR = {S, RES, A}

Next, the policy set is generated. Other than the policy
ID, this set includes references to the set of corresponding
rules SOR, precedence order between them RPO, combining
algorithm RCA, sets of obligations OBLs and Advices ADs if
any, and the target TAR.

P = {ID, SOR, RPO, RCA, OBLs, ADs, TAR}

Finally comes the rule set R, which includes ID,
condition C, sets of obligations OBLs and Advices ADs if
any, target TAR, and rule effect E.

R = {ID, C, OBLs, ADs, TAR, E}

C is a function to be evaluated against the target elements
(i.e., subject, resource and action), which is defined as

C = {Operation,{params}}

Both OBLs and ADs are defined in the same way.
The analysis is done at three levels; rule-based analysis in

Algorithm 1, policy-based analysis in Algorithm 2 and
policy set-based analysis in Algorithm 3.

Starting with Algorithm 1; to detect existing conflicts,
access flaws and redundancies between two rules R1 and R2,
the algorithm compares their targets, conditions and effects.

If the target (i.e., Subject, Resource and Action) and
condition set of R1 are subset of those of R2 (Lines 1 and 2),
both rules have the same effect (Line 3), then R1 is causing
access control flaw. If R1 target intersects with R2 target
(Lines 9 and 10) and both rules have opposite effects (Line
11), then they are conflicting. Otherwise, with same effects
the rules are redundant. Finally, if none of the problems is
found, an empty set is returned.

Next, Algorithm 2 analyzes the policies. It provides a set
of all problems (i.e., access flaws FPS, conflicts CPS and
redundancies RPS) that exist between two policies P1 and
P2. The first part of the algorithm (Line 1 till 16) checks for
flaws, conflicts and redundancies within each policy, while
in the second part (Line 17 till 37), this checking is
conducted between rules from different policies. The
returned values of Algorithm 1 are appended to the
appropriate sets in Algorithm 2.

Finally, Algorithm 3 analyzes the policy sets. This
algorithm displays all access flaws, conflicts and
redundancies between policies and rules existing within a
policy set PS. It initializes the corresponding global sets FPS,
CPS and RPS (Line 1) and calls Algorithm 2 (Line 2 till 6)

for checking flaws, conflicts and redundancies within each
policy and between policies and subsequently append the
relevant sets.

III. CASE STUDY
To better illustrate our approach, we suggest a Flight

System (FS) as a running example. The system consists of a
composition of three partners Web services. First, a
Financial Data WS, which offers access to financial reports.
Second, Flight Inquiries WS, which displays the flights with
their schedules, available seats and comparable tickets
prices, according to the user preferences. Third, a
Reservation WS that offers the ability to book a flight ticket.

To enforce security, the system imposes many policies
and rules that can be defined in an XACML file. For space
restrictions, Fig. 4 depicts only synopsis of such XACML
policy set reflecting the complexity in the policies definition.
The policy set consists of two policies P1 and P2 and has a
permit-overrides combining algorithm. P1 defines two rules
R1 and R2. R1 gives only admin the permission to access the
financial data while R2 permits anyone to access the same
resource. On the other hand, P2 defines two other rules R3
and R4. R3 allows anyone to make reservation in the flight
agency system while R4 prevents anyone from making
reservation in particular period. Figure 4 shows clearly that
specifying security policies in regular XACML XML-based
format is subtle and time consuming, and even the analysis
of such format is complex. To recall, XACML provides only
an evaluation engine at runtime, yet does not have any
efficient mechanism to detect problems and vulnerabilities
such as conflicts, redundancies and access flaws between
policies and rules.

Fig. 3. Flight System (FS)

A. Model-Driven Security Policies Specification
Rather than writing long, verbose and complex XACML

policy set for the Flight System, following our approach, the
user can create a simple UML model that contains: Policy set
PS1, Policies P1 and P2, Rules R1, R2, R3 and R4,
Conditions C1 and C2, and Targets for each rule (along with
their sub-elements) then applies systematic transformation
on the model based on the proposed UML profile. This is
done by:

1. Applying PolicySet stereotype on PS1 and
specifying its tagged values ID, CA and PPO.

2. Applying Policy stereotype on P1 and P2 and
specifying their tagged values ID, CA and RPO.

3. Applying Rule stereotype on R1, R2, R3 and R4
and specifying their tagged values ID and RE.

4. Applying Condition stereotype on C1 and C2
and specifying the appropriate operations
Operation.

5. Applying Target stereotype and its sub-
stereotypes on the relevant targets elements and
specifying the relevant tagged values of Subject,
Resource, and Action.

6. Associate the elements together.
Figures 4a 4b, and 4c depict the model after applying the

systematic transformation described above. Due to space
restrictions, we split the model on different Figures.

<? xml version ="1.0" encoding =" UTF -8"? >
<PolicySet xmlns="schema :os" PolicyCombiningAlgId="policy-combining-algorithm:permit-
overrides" PolicySetId ="PS1">
 <Policy xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17" PolicyId="P1"
 RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit-
overrides" Version="1.0">
 <Description>finanacial data policy</Description>
 <Target></Target>
 <Rule Effect="Permit" RuleId="R1">
 <Target> <AnyOf> <AllOf>
 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-regexp-match">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
 http://localhost:8280/fsservices/getFinancialData/</AttributeValue>
 <AttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-
id" Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
 DataType="http://www.w3.org/2001/XMLSchema#string"
MustBePresent="true"></AttributeDesignator>
 </Match> <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">invoke</AttributeValue>
 <AttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
 Category="urn:oasis:names:tc:xacml:3.0:attribute-category:action"
 DataType="http://www.w3.org/2001/XMLSchema#string"
 MustBePresent="true"></AttributeDesignator>
 </Match> </AllOf> </AnyOf> </Target> <Condition>
 ...
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">admin</AttributeValue>
 </Apply> ... </Apply> </Condition> </Rule>
 <Rule Effect="Permit" RuleId="R2">
 <Target> ... </Target> </Rule>
 </Policy>
 <Policy xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17" PolicyId="P2"
 RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-
overrides" Version="1.0"> <Description>reservation policy</Description>
 <Target></Target> <Rule Effect="Permit" RuleId="R3"> <Target> ... </Target> </Rule>
 <Rule Effect="Deny" RuleId="R4"> <Target> ... </Target> <Condition> ...
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#time">09:00:00</AttributeValue>
 </Apply> ... <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#time">16:00:00</AttributeValue>
 </Apply> </Apply> </Condition> </Rule>
 </Policy>
</PolicySet>

Listing 1. Synopsis of XACML Policy Set for FS

B. Design-Level Security Policies Analysis
After the specification of security policies and automatic

generation of their corresponding sets, the proposed analyzer
module takes care of the detection of existing problems and
vulnerabilities in the policy set based on the policies
semantics. Listing 2 presents a synopsis of the generate
analysis report. The highlighted messages illustrate the
capability of the proposed algorithms to detect access flaws,
conflicts and redundancies between policies and rules in the
policy set.

IV. RELATED WORK
In what follows, we present existing works for model-

driven security specification and security policies analysis.
Tout et al. [2], the authors proposed a model-driven approach

to define and integrate security aspects in Web services
composition. They presented a UML profile that extends the
BPEL to offer high-level specification of security aspects.
Their work relies on specific aspect security language for
BPEL, yet our approach relies on the standard XACML
language.

(a) Policy Set PS

(b) Policy P1 and its Associated Elements

(c) Policy P2 and its Associated Elements

Fig. 4. Design-Model of Security Policies for FS

...
PS1 contains 2 Policies P1 and P2.
 Check Access Flaws in P1.
 …
 R1 and R2 have Equivalent Targets.

 C1 is a Subset of C2.
 R1 and R2 have Same Effect, Permit.
 Access Flaw Detected between R1 and R2.
 FRS = {R1, R2}.
 …
 Check Conflicts between P1 and P2.
 P1 and P2 have Different Targets.
 No Conflict between P1 and P2.
 Check Conflicts in P2.
 P2 contains 2 Rules R3 and R4.
 ...
 R3 and R4 have Equivalent Targets.
 C4 is a Subset of C3.
 R3 and R4 have Different Effects, Permit and
 Deny.
 Conflict Detected between R3 and R4.
 CRS = {R3, R4}.
 ...
 Check Redundancies in P1.
 P1 contains 2 Rules R1 and R2.
 ...
 R1 and R2 have Equivalent Targets.
 C1 is a Subset of C2.
 R1 and R2 have Same Effect, Permit.
 Redundancy Detected between R1 and R2.
 RRS = {R1, R2}.

Listing 2. Synopsis of the Generated Report

Jin [3] has proposed model-driven architecture to build
role based access control (RBAC) model. To address the
complexity of XACML XML-based documents, they
proposed a UML profile to ease the specification of XACML
RBAC applications. Also, Busch et al. [4] argued that XML
syntax of XACML makes the process of policies
specification difficult and error-prone and thus they proposed
a UML-based notation to offer graphical modelling of
security properties. However, the notations presented in both
approaches did not cover all the elements of XACML
policies like obligations, and most importantly, they rely on
XACML 2.0, which is not the latest version. Per contra, we
presented in this paper a UML profile that covers all the
elements of the latest version of XACML, offering the
ability to design any policy expressed in this language.

In different works [11, 12], set based approaches have
been presented for XACML policies evaluation and analysis,
yet not at design-model level. Florian et al. [6] dealt with
conflicts, yet did not address other problems like those we
presented throughout this paper. Kolovski et al. [7] proposed
a formalization of XACML using description logics (DL)
and verification using the existing DL verifiers. Even though
their analysis is able to detect redundancies between rules,
yet they don’t provide means for detecting access flaws and
even they do not support conditions and some combining
algorithms. Rao et al. [8] introduced algebra for fine-grained
integration supporting specification of integration
constraints. However, they missed many elements of
XACML like rule conditions and obligations. Opposed to
our work, these approaches cannot support important
elements in XACML, discarded some critical problems and
vulnerabilities, and more essentially, none of them has
proposed analysis at the design level.

V. CONCLUSION AND FUTURE WORK
This paper presented a UML profile for high-level

specification of security policies, and design-level analysis to
detect problems and vulnerabilities like conflicts,

redundancies, and access flaws, in the defined policies
semantics, a priori to their application at runtime. As for
future work, we plan to address different type of flaws that
can arise between policies especially those that can threaten
more complex systems like Web services composition.

ACKNOWLEDGMENT
This work has been supported by the Lebanese American

University (LAU) and CNRS Lebanon.

REFERENCES
[1] Rissanen, Erik. "extensible access control markup language

(xacml) version 3.0 (committe specification 01) ". Technical
report, OASIS, http://docs.oasisopen.org/xacml/3.0/xacml-
3.0-core-spec-cd-03-en.pdf, 2010.

[2] Tout, Hanine, Azzam Mourad, Hamdi Yahyaoui,
Chamseddine Talhi, and Hadi Otrok. "Towards a BPEL
model-driven approach for Web services security." InPrivacy,
Security and Trust (PST), 2012 Tenth Annual International
Conference on, pp. 120-127. IEEE, 2012.

[3] Jin, Xin. "Applying model driven architecture approach to
model role based access control system." PhD diss.,
University of Ottawa, 2006.

[4] Busch, Marianne, Nora Koch, Massimiliano Masi, Rosario
Pugliese, and Francesco Tiezzi. "Towards model-driven
development of access control policies for web applications."
In Proceedings of the Workshop on Model-Driven Security, p.
4. ACM, 2012.

[5] OASIS. Omg unified modeling languageTM (omg uml)
version 2.5. Technical report, OASIS,
http://www.sce.carleton.ca/courses/sysc-5708/f14/UML2_5-
ptc-13-09-05.pdf, 2013.

[6] Huonder, Florian, Josef M. Joller, and Z. H. Rüschlikon.
"Conflict detection and resolution of XACML
policies." Master's thesis, University of Applied Sciences
Rapperswil (2010).

[7] Kolovski, Vladimir, James Hendler, and Bijan Parsia.
"Analyzing web access control policies." In Proceedings of
the 16th international conference on World Wide Web, pp.
677-686. ACM, 2007.

[8] Rao, Prathima, Dan Lin, Elisa Bertino, Ninghui Li, and Jorge
Lobo. "An algebra for fine-grained integration of XACML
policies." In Proceedings of the 14th ACM symposium on
Access control models and technologies, pp. 63-72. ACM,
2009.

[9] Marouf, Said, Mohamed Shehab, Anna Squicciarini, and
Smitha Sundareswaran. "Adaptive reordering and clustering-
based framework for efficient XACML policy
evaluation." Services Computing, IEEE Transactions on 4,
no. 4 (2011): 300-313.

[10] Ngo, Canh, Marc X. Makkes, Yuri Demchenko, and Cees de
Laat. "Multi-data-types interval decision diagrams for
XACML evaluation engine." In Privacy, Security and Trust
(PST), 2013 Eleventh Annual International Conference on,
pp. 257-266. IEEE, 2013.

[11] Mourad, Azzam, and Hussein Jebbaoui. "SBA-XACML: Set-
based approach providing efficient policy decision process for
accessing Web services." Expert Systems with
Applications 42, no. 1 (2015): 165-178.

[12] Jebbaoui, Hussein, Azzam Mourad, Hadi Otrok, and Ramzi
Haraty. "Semantics-based approach for detecting flaws,
conflicts and redundancies in XACML policies." Computers
& Electrical Engineering (2015).

