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An Optimized UAV Trajectory Planning for
Localization in Disaster Scenarios
Freddy Demiane, Sanaa Sharafeddine,defenses and and Omar Farhat

Abstract—Unmanned aerial vehicles (UAVs) are con-
sidered one of the most promising emerging technolo-
gies to support rescue teams in disaster management
and relief operations according to UN and Red Cross
reports. In this work, we consider a disaster scene with
damaged communication infrastructure and leverage
UAVs for efficient and accurate positioning of potential
survivors through the seamless collection of the re-
ceived signal strength indicators (RSSI) of their mobile
devices. We assume the scene is divided into multiple
regions or cells with varying levels of importance based
on the damage degree or the population density for
example, and, thus, requiring different localization ef-
fort to improve the achieved accuracy. We formulate
and solve two complementary subproblems. The first
subproblem identifies a minimal number of strategic
positions, referred to as waypoints or scanning points,
at which the UAV hovers to collect the required number
of RSSI signals from all devices within each cell in
the disaster scene. Cells assigned higher importance
levels call for higher number of RSSI readings from
their devices. The waypoints generated from the first
subproblem are then input to the second subproblem
that constructs an efficient UAV trajectory that tra-
verses all waypoints. By the end of the UAV mission,
the collected RSSI measurements are processed to lo-
calize the discovered devices while taking into account
the wireless channel statistical variability. Simulation
results are generated and analyzed to demonstrate the
accuracy and effectiveness of the proposed solution
approach in localizing an unknown number of mobile
devices in disaster scenes with regions of varying im-
portance levels. In addition, an experimental testbed
is designed and implemented as a proof of concept to
validate the practicality of implementing the proposed
localization solution in a realistic setting.

Index Terms—Unmanned Aerial Vehicle (UAV), tra-
jectory planning, localization, testbed implementation.

I. Introduction
Timely localization of victims in natural or man-made

disasters remains crucial for successful search and rescue
missions. The safety of first responders is considered top
priority in those missions and, thus, accurate localization
is extremely critical to reduce risks while navigating dam-
aged structures. Vast range of tools have been developed to
support emergency responders and incident commanders,
each customized to specific requirements and features [1].
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Major effort has been invested in designing localization
systems to overcome the limitations of the Global Posi-
tioning System (GPS) in indoor environments. Most of
these systems are based on fingerprinting techniques that
do not require line of sight assumption. Being widely
prevalent, the fingerprints of existing WiFi-enabled devices
can be readily collected without incurring any additional
infrastructural cost. The work in [2] argues that valuable
information can be extracted from passive monitoring of
WiFi traffic and demonstrated three possible use cases
with high accuracy: user localization, user profiling, and
device classification. Other technologies have also been
investigated in the literature including Bluetooth [3], [4],
radio-frequency identification (RFID) [5], [6], acoustic sig-
nals [7], light [8], [9], and others [10]. For the case of out-
door localization, GPS systems are accurate and reliable
for vast range of applications especially that almost all
mobile devices are equipped with GPS receivers. Whether
in indoor or outdoor environments, localization becomes
a challenging task during emergency situations. Connec-
tivity with users is lost due to potential damage of the
communication infrastructure and/or user unconscious-
ness; in addition, physical structures can be extremely
altered rendering any existing fingerprints non-reliable.

Unmanned aerial vehicles (UAVs) have emerged as a
promising technology in crisis support ranging from deliv-
ering aid [11], to humanitarian data collection, providing
intermittent communication [12], [13], [14], and assisting
in search-and-rescue missions [15], [16]. In this work,
we consider a disaster scene with unknown number of
victims who might be lost or trapped under debris. We
assume the scene is divided into multiple regions with
varying levels of importance. Our objective is to launch
a UAV to scan the area and accurately localize potential
survivors, in the least possible time, via measuring the
received wireless signal strength emitted from the victim’s
mobile devices, be it Wifi or cellular. To achieve this,
we model and solve two complementary sub-problems.
The first sub-problem aims at identifying the minimum
number of scanning points the UAV should visit to allow
a full scan of the whole area while meeting the accuracy
levels of the different regions. The second sub-problem
aims at constructing the shortest possible UAV trajectory
to traverse all the points generated from the first sub-
problem. After the UAV traverses its determined route
and collects from different positions the RSSI values of
the devices residing in the scanned area, localization is
then performed. The latter extends on the well-known
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trilateration technique to account for statistical variation
in the wireless channel model.

A. Related Literature
There exists a rich literature on localization methods

and positioning systems designed for various applications
including disaster and emergency situations in indoor
and outdoor environments. In this section, we focus on
recent research efforts that utilize UAVs for improved
and efficient localization of devices. A practical UAV-
based positioning system is proposed in [17] that does not
rely on any fixed infrastructure. The authors use Moore
curve and calculate the minimum curve level needed to
sense all targets with minimum flight distance. This allows
them to identify a hot area that includes potential targets
and recursively apply Moore curve for better localization
accuracy. GuideLoc proposed in [18] is another UAV-based
positioning system with a similar objective. The authors
divide the area into multiple unit partitions if the area is
larger than the communication range of the UAV. They
designate the center of unit partitions to be along the
UAV route. At each center, the UAV senses all available
devices within this partition and estimates the locations of
devices based on RSSI and angle of arrival measurements.
This information is then used to build a traveling salesman
route to visit all estimated positions in one unit partition
before leaving to the center of the next unit partition. At
each visited position, the UAV attempts to improve the
localization estimate of the corresponding device by flying
in the direction of its strongest RSSI and finally sets the
device position to the UAV coordinates when the RSSI is
at its highest value.
Another recent related work is presented in [19] where a
UAV is used to collect WiFi probe requests from known
WiFi-enabled mobile devices to identify the geographical
zone in which they are located. In the training phase,
one UAV flies over the area and gathers WiFi probe
requests from each zone. RSSI level and MAC addresses
are extracted from the probe request and the actual GPS
coordinates of the UAV are associated with the respective
reading. After learning, the UAV collects readings and
random forest algorithm is utilized to classify the zone in
which a given device resides. Experimental tests resulted
in around 82% accuracy to identify the right zone. In
[20], the authors make use of UAVs to perform secure
localization as an alternative to expensive fixed anchors,
by taking each anchor as a waypoint for the UAV to
perform localization. An algorithm named LocalizerBee
is proposed to localize a given number of nodes using
a trilateration technique that requires each node to be
inside a triangle formed by three scanning points. To do
so, a grid of vertices that form isosceles triangles with
union that covers the entire area is generated and the
travelling salesman problem is then applied to connect
the vertices in an efficient way. In [21], the authors
suggest using a UAV to provide wireless connectivity to
ground users through solving a joint transmit power and

trajectory optimization problem, while maximizing the
minimum average throughput for a given time period. The
aforementioned problem is non-convex and intractable, so
it was divided to two convex optimization sub-problems:
optimizing the transmit power for a given trajectory and
optimizing the trajectory for a given transmit power. A
sub-optimal low complexity iterative algorithm was pro-
posed for the joint problem using the solutions of the two
previous sub-problems. Simulation results demonstrated
the superiority of the proposed solution compared to a
benchmark where the UAV flies along a straight line from
the starting point to the end point at a uniform speed.
In [22], outdoor experiments are conducted to validate the
so-called efficient geometry-based localization approach to
localize static sensor nodes using a UAV equipped with a
global navigation satellite system receiver. Experimental
results proved high accuracy precision as compared to
standard benchmark techniques.

Moreover, the anticipated prevalent use of UAVs calls
for effective surveillance systems to detect unauthorized
UAVs and localize them [23]. UAVs can also be leveraged
to localize other UAVs. In [24], [25], a swarm of UAVs
equipped with basic omni-directional antennas coopera-
tively localize a moving radio frequency transmitter. The
proposed method is based on a predictive approach that
computes a new UAV trajectory every time a new estimate
of the target location is determined.

B. Novel Contributions
In light of the surveyed literature, we summarize below

the major contributions of this paper.
• We address the problem of localizing an unknown

number of victims scattered over a disaster scene that
includes regions with varying levels of importance.
The victims are assumed to hold mobile devices that
have lost their wireless connectivity due to destroyed
communication infrastructure. A key novelty of our
problem formulation is the consideration of disaster
scenes with heterogeneous importance levels.

• We propose and develop an efficient localization so-
lution that leverages commodity UAVs and optimizes
their flight trajectory to collect seamlessly RSSI mea-
surements from mobile devices scattered arbitrarily
over a given disaster scene. Our solution approach
decomposes the problem into two subproblems: i. the
first determines strategic waypoints at which the UAV
hovers and collects the required number of RSSI
readings to offer differentiated accuracy levels across
the area; ii. the second constructs an efficient path
composed of all waypoints generated from the first
subproblem. Localization is then performed while ac-
counting for statistical variation in the wireless chan-
nel model and by utilizing additional RSSI readings
to further enhance accuracy.

• We design and develop an experimental testbed that
implements the proposed solution in order to demon-
strate its effectiveness under practical settings. These
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experimental results complement a wide set of pre-
sented simulation results to analyze performance and
extract useful insights.

II. System Model
We consider a disaster scene with damaged communica-

tion infrastructure where an unknown number of victims
are lost or trapped under debris. We assume that most
victims carry mobile devices. Figure 1 depicts the system
model that shows an example disaster scenario, where the
affected area is divided into regions with different levels
of damage or importance.

As part of the search and rescue operation, a UAV is
launched at a fixed height ℎ to follow an efficient trajectory
computed by a centralized server managed by the rescue
team in order to scan the disaster area. During its mission,
the UAV performs repeated RSSI measurements of the
wirelss signals emitted from the victims’ mobile devices,
and once done delivers all measurements to the server.
These readings are then used to identify the location of
the victims that we denote as users hereinafter. Whenever
the UAV and a user are within the communication range
of each other, the UAV can capture all signals transmitted
by the user. The radio range to capture the devices’ signals
at the UAV is denoted as 𝑟𝑠. We define a radius 𝑟 to be the
projection of 𝑟𝑠 on the ground, and it can be computed as
𝑟 = √𝑟2𝑠 − ℎ2. Figure 2 depicts the relation among ℎ, 𝑟𝑠,
and 𝑟.

To compute the trajectory that the UAV follows, the
disaster scene is divided into equal sized 𝑛 × 𝑚 square
cells of side length 𝜌, where 𝑛 is the number of rows and
𝑚 is the number of columns as demonstrated in Figure 1.
Each cell is denoted by (𝑖, 𝑗), where 𝑖 is the row index
and 𝑗 the column index such that 0 ≤ 𝑖 < 𝑛 and 0 ≤
𝑗 < 𝑚. Cells are given differentiated levels of importance
to reflect the corresponding need for localization accuracy
and, hence, a higher number of required RSSI readings. We
denote by 𝐾𝑖𝑗 the number of readings required for each
cell (𝑖, 𝑗). The process of assigning the importance level
of cells depends on various metrics such as the damage
degree and the population density within each cell. For
example, areas that span parks and empty spaces may be
assigned less number of readings as compared to areas with
building structures that are likely to be more populated
and the rescue mission is more challenging. In the case
when it is based on the damage degree for example, image
processing techniques may be utilized to compare pre- and
post-disaster satellite images to assess the different levels
of damage within the disaster scene.

Based on the given set of required number of readings
over the whole area, we aim at identifying an optimized
set of cells with centers that will form the UAV’s
trajectory waypoints 𝑠 ∈ 𝒮. Each waypoint 𝑠 when visited
by the UAV allows the scanning of RSSI signals emitted
from devices located within the waypoint’s cell as well as
all neighboring cells that are within the UAV’s coverage
range. As the UAV follows the trajectory, it collects the
required number of RSSI readings for all cells based on the

assigned importance levels. Being used for scanning, each
waypoint is referred to as a scanning point. The order in
which the scanning points are visited is determined by
minimizing the total trajectory distance.

The complete localization process is summarized in a
step-wise manner below. We note that communication
between the server and the UAV is only needed at the start
as well as at the end of the UAV mission. The computed
trajectory plan is downloaded to the UAV at the beginning
of its mission and the collected RSSI readings are uploaded
to the server once the UAV mission is completed.

• The map of the disaster scene is input to the server
managed by the search and rescue team. The disaster
area is divided into cells with different importance
levels based on set metrics if available; otherwise, all
cells are assigned a uniform level of importance.

• The server computes the UAV trajectory and transfers
it to the UAV.

• The UAV is launched and follows the trajectory plan,
while hovering over each scanning point for a pre-
defined amount of time and measuring RSSI of all
available wireless signals emitted from users in the
area.

• The UAV travels back to the server to deliver the
collected RSSI readings.

• The server runs the proposed algorithm using the
provided input to determine the estimate location of
discovered users.

III. Problem Decomposition and Proposed
Solution Approach

The addressed problem in this work considers identi-
fying a minimal number of scanning points at which the
UAV is expected to hover and collect the required number
of RSSI signals dictated by each region of the disaster
scene, in addition to constructing an efficient trajectory
that traverses all scanning points. This is followed by
mapping the RSSI readings to distance estimates while
accounting for wireless channel variability, and finally
determining the area in which each device may reside. In
order to deal with the problem complexity, we decompose
it into two subproblems as explained in this section.

A. Scanning Points Identification Subproblem
In this subproblem, we are concerned to find the mini-

mum number of UAV scanning points such that hovering
on top of those positions allows the UAV to listen to and
collect 𝑘𝑖𝑗 RSSI readings required by each cell (𝑖, 𝑗) such
that its residing users can be accurately localized. To do
so, the area of interest, after being divided into equal-
sized cells, is modeled as a graph 𝒢 = 𝒱 ∪ ℰ with 𝒱
denoting the set of vertices that constitute the centers
and ℰ the set of edges. Using the graph terminology,
each vertex 𝑣 corresponding to cell (𝑖, 𝑗) is required to be
covered 𝑘𝑣 = 𝑘𝑖𝑗 times. An edge 𝑒 ∈ ℰ exists between
two vertices 𝑣 and 𝑢 whenever their corresponding cells
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Fig. 1. The image on the left represents an example disaster scene. The figure on the right shows the digitization of the area and the assignment
of the number of readings per cell depending on its level of damage or importance. The darker the color, the higher the importance level
and the number of required readings. The UAV trajectory is drawn with the red dots representing the UAV’s scanning points.

Fig. 2. Projection of the UAV’s coverage range on the ground.

are within the coverage range of each other and thus
the vertices are considered adjacent when they satisfy the
following equation: dist(𝑣, 𝑢)+𝜌

√
2

2 ≤ 𝑟, where dist(𝑣, 𝑢) is
the Euclidean distance between the two vertices. In other
words, when the UAV resides in one cell, it can listen to
RSSI signals coming from all users in the other cell. The
subproblem is then reduced to determining the minimum
subset 𝒮 ∈ 𝒱 such that each vertex 𝑣 in 𝒱 is adjacent
to 𝑘𝑣 vertices in 𝒮. Consequently, this subproblem can be
reduced to the minimum dominating set problem if we
consider one instance of it when the required number of
readings is one.

To formulate this subproblem, we define a binary vari-
able 𝑑𝑣 that is set to 1 when vertex 𝑣 is selected to be part
of 𝒮 and set to 0, otherwise. Thus, the scanning points
identification subproblem can be formulated as follows:

minimize ∑
𝑣∈𝒱

𝑑𝑣 (1)

subject to ∑
𝑢∈𝐸[𝑣]

𝑑𝑢 ≥ 𝑘𝑣 ∀𝑣 ∈ 𝒱 (2)

The constraint in (2) signifies that each vertex 𝑣 must be
scanned 𝑘𝑣 times when the UAV visits all vertices 𝑢 ∈ 𝒮,
where 𝒮 includes all vertices 𝑢 that have 𝑑𝑢 = 1. 𝐸[𝑣]
in (2) denotes the neighborhood set of vertex 𝑣 including
itself, where the neighborhood of a vertex constitutes all
adjacent vertices.

Being an NP-hard problem, we develop a two-step
heuristic algorithm based on a greedy approach to solve

the dominating set problem as described in [26]. The
greedy approach selects the vertex which can dominate the
maximum number of uncovered vertices until all vertices
are covered. To apply it to our problem that requires every
vertex 𝑣 to be dominated 𝑘𝑣 times, the first step selects
the vertex with the highest dominance rank based on the
adjacent vertices that still have remaining readings. The
second step applies a local search that iteratively removes
vertices from the dominating set as long as every vertex
is still dominated at least 𝑘𝑣 times. In each iteration,
the vertex which dominates the least number of vertices
is considered first. This solution is referred to as SPDS
(Scanning Points Dominating Set) and presented in Al-
gorithm 1. SPDS has a worst case time complexity of
𝑂(𝑢2𝑑𝑒𝑔(𝑢)), where 𝑢 is the number of cells and 𝑑𝑒𝑔(𝑢)
represents number of cells the UAV radius 𝑟 can cover.

A common pitfall of SPDS is that it does not account
for the geometrical requirements of trilateration to ensure
a more accurate localization. These requirements include
having the device to be localized: 1) not co-linear with
the scanning points, 2) close to the scanning points,
and 3) inside the triangle formed by those points [27].
To address the geometrical requirements of trilateration,
we utilize Centroidal Voronoi Tessellation (CVT). The
Voronoi tessellation of a given two-dimensional space par-
titions it into 𝑛 convex polygons based on distances to 𝑛
designated points called generators such that each point
inside a polygon is closer to its generator. A Voronoi
tessellation is considered centroidal when the generators
are the centroids of the polygons. After running SPDS,
we use the resulting scanning points as initial generators
of the CVT that we determine using Lloyd’s iterative
algorithm as described in [28], which has a time complexity
of 𝑂(𝑖𝑠𝑙𝑜𝑔(𝑠)), where 𝑠 is the number of scanning points
and 𝑖 is the number of iterations. To avoid situations
where CVT results in co-linear scanning points, we scatter
the initial generators across the search space and select
the vertex 𝑣 that maximizes 𝑓(𝑣) while running SPDS
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whenever multiple vertices exhibit the same dominance
score. 𝑓(𝑣) = ∑𝑢∈𝒮 ∥ 𝑣 − 𝑢 ∥2, where 𝒮 is the current
set of already chosen vertices that constitute the scanning
points. Maximizing the sum of squares of the distances
in 𝑓(𝑣) avoids having two points close to each other.
After forming the CVT, the distance between the centroid
and the scanning point that was input as the initial
generator is computed. If it is less than a certain threshold,
the scanning point is kept in the final solution and the
generator is discarded. Otherwise, the centroid replaces
the scanning point in the final solution. SPDS is finally
re-run to guarantee that the final set 𝒮 of scanning points
can still ensure 𝑘𝑣 readings for all 𝑣 ∈ 𝒱. This algorithm
is presented in Algorithm 2 and is referred to as SPVT
(Scanning Points Voronoi Tessellation). SPVT has the
same time complexity of SPDS.

B. Trajectory Construction Subproblem
The scanning points subproblem identifies the strategic

scanning points that the UAV visits to capture incoming
RSSI readings coming from neighboring cells. The trajec-
tory construction subproblem takes the scanning points
as an input and generates an efficient UAV trajectory.
This subproblem reduces to the Travelling Salesman Prob-
lem (TSP) where the weight of an edge that connects
two scanning points is the Euclidean distance between the
two vertices. In our case, an exact solution isn’t required
as UAVs have high flight speeds greatly mitigating the
time lost navigating the longer path of the approximated
solution compared to the exact one. We use the 2-opt
heuristic solution of the TSP as described in [29] to
efficiently compute the UAV trajectory. The 2-opt local
search heuristic has 𝑂(𝑢2) time complexity, where 𝑢 is the
number of scanning points, and can guarantee a 2-optimal
solution.

C. Localization with Wireless Channel Variability
As described in [30], many localization techniques can

be used in wireless networks like trilateration, multi-
lateration, triangulation and others. The aforementioned
techniques are based on GPS, RSSI, AOA (angle of ar-
rival), TOA (time of arrival), or TDOA (time difference
of arrival) measurements to perform localization of devices
with unknown positions. RSSI-based techniques have been
shown to provide an effective tradeoff between accuracy,
feasibility and complexity and, thus, are suitable for our
proposed solution approach. Once an RSSI reading is
captured, it needs to be converted to distance using an
appropriate channel model. The channel model proposed
in [31] is widely used for aerial platforms; however, it is
based on the angle of incidence between each device and
the UAV, the fact that makes it not applicable to our
problem as the locations of the devices are not known.
Consequently, we resort to using the following log-normal
shadowing pathloss model as it is capable of modeling
wireless environments with acceptable precision [32]:

𝑃𝑟(𝑑𝐵) = 𝑃𝑡(𝑑𝐵) − 10𝛼 log ( 𝑑
𝑑0

) + 𝑋𝜎, (3)

Input: 𝒢 = 𝒱 ∪ ℰ, K
Output: 𝒮
𝒢 ← graph containing the vertices and edges
𝐾 ← array holding the number of readings per vertex
𝐸 ← array holding the neighbors of each vertex
𝒮 ← ∅
while NOT Constraints_Satisfied(𝒢, 𝒮, 𝐾) do

𝑣 ← Best_Vertex(𝒢, 𝒮, 𝐾)
𝒮 ← 𝒮 ∪ 𝑣
Update_Readings(𝒢 , 𝑣 , 𝐾)

end
while NOT Local_Search(𝒢, 𝒮, 𝐾) do
end
return 𝒮

Function Constraints_Satisfied(𝒢, 𝒮, 𝐾):
for 𝑣 ∈ 𝒱 do

if 𝑘[𝑣] > 0 then
return False

end
end
return True

Function Best_Vertex(𝒢, 𝒮, 𝐾):
𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 ← 0
𝑏𝑒𝑠𝑡_𝑣𝑒𝑟𝑡𝑒𝑥 ← 𝑁𝑈𝐿𝐿
for 𝑣 ∈ 𝒱 and 𝑣 ∉ 𝒮 do

𝑠𝑐𝑜𝑟𝑒 = ∑𝑢∈𝐸[𝑣] 𝑚𝑎𝑥(1, 𝑘[𝑢])
if 𝑠𝑐𝑜𝑟𝑒 ≥ 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 then

𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑐𝑜𝑟𝑒
𝑏𝑒𝑠𝑡_𝑣𝑒𝑟𝑡𝑒𝑥 ← 𝑣

end
end
return 𝑣

Function Update_Readings(𝒢, 𝑣, 𝐾):
for 𝑢 ∈ 𝐸[𝑣] do

𝑘[𝑢] ← 𝑘[𝑢] − 1
end

Function Local_Search(𝒢, 𝒮, 𝐾):
𝒮 ← 𝒮 sorted based on dominance rank
for 𝑣 ∈ 𝒮 do

Update_Readings_Local(𝒢, 𝑣, 𝐾)
if Constraints_Satisfied(𝒢, 𝒮 − 𝑣, 𝐾) then

𝒮 ← 𝒮 − 𝑣
return True

end
else

Update_Readings(𝒢, 𝑣, 𝐾)
end

end
return False

Function Update_Readings_Local(𝒢, 𝑣, 𝐾):
for 𝑢 ∈ 𝐸[𝑣] do

𝑘[𝑢] ← 𝑘[𝑢] + 1
end

Algorithm 1: SPDS Algorithm
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Input: 𝒢 = 𝒱 ∪ ℰ, 𝒮
Output: 𝒮′ - updated set of scanning points
𝒢 ← graph containing the vertices
𝒮 ← solution got from the modified SPDS
𝐶𝑉 𝑇 ← centroids of the CVT from 𝒮
𝒮′ ← ∅
for 𝑣 ∈ 𝐶𝑉 𝑇 do

𝑠 ← vertex in 𝒮 closest to 𝑣
𝒮 ← 𝒮 − 𝑠
if ∥ 𝑠 − 𝑣 ∥≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

𝒮′ ← 𝒮′ ∪ 𝑣
end
else

𝒮′ ← 𝒮′ ∪ 𝑠
end

end
while NOT Constraints_Satisfied(𝒢 , 𝒮′ , 𝐾) do

𝑣 ← Best_Vertex(𝒢 , 𝐾)
𝒮′ ← 𝒮′ ∪ 𝑣
Update_Readings(𝒢 , 𝑣 , 𝐾)

end
return 𝒮′

Algorithm 2: SPVT Algorithm

Fig. 3. The left figure depicts trilateration with one fixed 𝑋𝜎. The
right figure shows the case in which 𝑋𝜎 is bounded between two
values.

where 𝑃𝑟 and 𝑃𝑡 denote the received and the transmitted
power, respectively, 𝑑0 the reference distance of 1 m, 𝑑
the distance between the receiver and transmitter, 𝛼 is the
path-loss exponent that depends on the environment and
𝑋𝜎 represents the signal variation caused by shadowing
and modeled as a Gaussian random variable with zero
mean and standard deviation 𝜎. The distance between the
UAV and the device to be localized can then be calculated
as follows:

𝑑 = 10 𝑃𝑡−𝑃𝑟+𝑋𝜎
10𝛼 . (4)

After mapping the received RSSI reading to its corre-
sponding distance, well-known trilateration-based localiza-
tion techniques can be used. In a two-dimensional space,
three distance measurements from three distinct positions
are recorded to generate three circles centered at the
position where the measurements are taken with radii
equal to the respective measurements. Should the distance
measurements be accurate, the three circles intersect in
one point that constitute the position of the object to
be localized. Unfortunately, converting RSSI values to
distances does not yield accurate measurements due to the
statistical variations in wireless channels. As a result, the

TABLE I
Total number of vertices generated by SPDS as compared

to the optimal solution

Number of Radius Optimal SPDS SPDS/Optimal
Readings in 𝑚 Solution Solution Ratio

3 2 31 36 1.16
3 3 15 17 1.13
3 4 12 12 1.00
4 2 41 47 1.14
4 3 20 22 1.20
4 4 16 16 1.00

circles do not end up intersecting in one point but rather
have an intersection area as demonstrated in the left side
of Figure 3, and the device’s position is then estimated by
minimizing the least square error.

Due to variations in different environments, it is not
possible in practice to estimate a fixed value for the shad-
owing component to be factored in the distance calculation
in (4). As a result, we address this problem by bounding
the shadowing component between two designated val-
ues 𝑋𝜎min and 𝑋𝜎max and calculating the corresponding
bounding distance values 𝑑min and 𝑑max, respectively, to
form the radii of two concentric circles centered at the
position of the UAV when the corresponding measurement
is taken. The user is then expected to reside in the circular
ring formed by the area enclosed by the two concentric
circles. The UAV then moves and collects measurements
from at least two other positions to satisfy the requirement
of trilateration. Two concentric circles are generated from
each measurement as depicted in the right side of Figure 3
and the user location is then bounded to the area of
intersection of all circular rings. The user’s location is
estimated to be the centroid of the resulting formed area.

IV. Simulation Results and Discussion

A. Scanning Points Identification Subproblem: SPDS vs.
Optimal Solution

To evaluate the performance of the proposed SPDS
algorithm that generates the dominating set to cover every
vertex 𝑣 ∈ 𝒱 𝑘𝑣 times, we compare it against the optimal
solution of the problem defined in (1) – (2) for small-scale
scenarios using Matlab’s optimization toolbox. The grid
size is set to 10𝑚×10𝑚 with a side length 𝜌 = 1𝑚. We note
that this considered scenario is intentionally limited to a
small geographical area so the optimal solution is obtained
in reasonable time. More realistic scenarios are considered
later in this section to demonstrate the effectiveness of the
proposed SPDS approach. Table I compares the results of
SPDS versus the optimal solution for a uniform number
of readings across all cells. For every 𝑘𝑣, the UAV radius 𝑟
takes the following values: 2𝑚, 3𝑚, and 4𝑚. Table I shows
the number of vertices in the dominating set generated by
both the optimal solution and SPDS. As demonstrated,
SPDS is capable of generating close-to-optimal results that
constitute the initial set of scanning points.
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Fig. 4. Graph showing the execution time of SPVT while reducing
the number of cells in a 200 x200 square meters area (𝜌 values ranging
from 1 to 6 meters).

B. Execution time
To study the efficiency of SPVT and the effect of the

number of cells on the execution time of the algorithm, we
measure the time to run SPVT for different 𝜌 values on an
environment consisting of a 200x200 square meters area,
resulting in different number of cells. The UAV height ℎ is
set to 15 meters and the UAV range 𝑟𝑠 to 60 meters. The
algorithm runs on an Intel Core i7 6700K processor. The
results, presented in Figure 4, show that a high number
of cells can be very detrimental to the execution time of
the algorithm, hence the importance of avoiding relatively
small 𝜌 values. The execution time drops by more than
90% when 𝜌 increases from 1 to 2 meters resulting in
reducing the number of cells from 200x200 to 100x100.

C. Performance Improvement through SPVT
To evaluate the localization accuracy of our solution and

the improvement caused through running SPVT rather
than SPDS alone, we develop a simulation environment
with 200𝑚 × 200𝑚 area divided into a grid of cells,
each with side length 𝜌 = 10𝑚. All cells (𝑖, 𝑗) require
equal 𝑘𝑖𝑗 readings that vary between 3 and 8. 400 users
are randomly placed in the search space according to a
uniform distribution and each user casts a number of
WiFi beacons over time. RSSI readings are captured by
the UAV whenever it is within the coverage range of
the user. RSSI readings are generated according to (3),
where 𝑋𝜎 follows a Gaussian distribution with zero mean
and standard deviation 𝜎 set to 4 dB [33], [34]. Upon
capturing an RSSI reading by the UAV, two bounding
distances are generated, as described in Section III-C, one
with 𝑋𝜎 = 𝑋𝜎 min and the other with 𝑋𝜎 = 𝑋𝜎 max.
𝑋𝜎 min is chosen to be equal to the signal level minus
2𝜎 and 𝑋𝜎 max to be equal to the signal level plus 2𝜎.
The values of the main simulation parameters are listed in
Table II unless otherwise specified. The localization results
are then generated as shown in Figure 5 to evaluate the

TABLE II
Key simulation parameters

Parameter Value
ℎ (UAV height) 15 meters
𝑟𝑠 (UAV range) 60 meters
𝛼 (pathloss exponent) 4
𝜎 (shadowing standard deviation) 4 dB
𝑃0 (transmission power) -60 dB
𝜌 (cell side) 10 m

performance improvement of applying SPVT compared to
applying SPDS to solve the scanning points identification
subproblem.

As per Figure 5, the localization error drops as the
number of readings per cell increases. Applying SPVT,
however, consistently offers superior performance over
SPDS. In terms of localization error, the SPVT algorithm
results in an average error of around 6 m for the scenario
with five readings per cell and 2 m for eight readings per
cell, while SPDS results in 9 m for five readings per cell
and 6 m for eight readings per cell. The middle graph
of Figure 5 shows that SPVT does not require additional
number of scanning points as compared to SPDS as both
curves are almost overlapping. The right graph presents
the percentage of accurately localized devices within a
given distance for the case of five readings per cell and
demonstrates the improvement of localization accuracy
when SPVT is applied. For example, using SPVT, 60%
of the devices are accurately localized within six meters
compared to less than 50% for SPDS. This graph demon-
strates the improvement in localization accuracy when the
geometrical requirements of trilateration are respected.

In Figure 6, an example UAV trajectory is presented
for each of SPDS and SPVT when the number of readings
per cell is set to five and the number of devices scattered
over the area is set to 20 for better visualization. The
black dots mark the generated scanning points. It is clear
that the SPVT scanning points are more uniformly spread
across the search space compared to SPDS where several
scanning points are relatively close to each other.

D. Example Disaster Scenario
In this subsection, we intend to apply our proposed

SPVT localization solution to a realistic scenario. We ex-
tract 320𝑚×320𝑚 area from a picture showing the damage
caused after the tsunami disaster in Indonesia and divide
it into a grid of cells as shown in Figure 7. The number
of readings per cell depends on the assigned importance
level and may be set according to the undertaken damage,
where it varies between 3 and 6. We run SPVT and
plot in Figure 8 the average localization accuracy with
respect to the UAV’s range. For each value of the UAV
range, we generate 30 runs and compute average accuracy
results. The figure demonstrates that smaller UAV ranges
reduce the error at the expense of increasing the number
of scanning points required to cover the whole area.

Finally, to better assess the efficacy of SPVT, we com-
pare its performance against an alternative approach. We
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Fig. 5. Performance improvement of SPVT compared to SPDS. The left graph shows the average localization error versus the number of
readings per cell. The middle graph plots the number of generated scanning points versus the number of readings. The right graph depicts
the percentage of users localized within a certain distance of their actual location for the scenario with five readings per cell.

Fig. 6. The left figure shows the UAV’s trajectory using the SPDS algorithm. The right figure shows the UAV’s trajectory using the SPVT
algorithm. All cells are assumed to have the same importance with five required readings.

select a UAV-based localization solution proposed in [17]
and referred to HAWK, as being very related to this
work. HAWK, however, aims at identifying the populated
areas and then intensifies the UAV hovering above those
areas to better localize the users. To do so, the work
in [17] generates an initial Moore’s curve to cover the
entire search space. The level of the Moore’s curve and
the UAV speed are selected in a way to capture at least
one packet from each possibly existing user during the
UAV’s flight. Once the UAV receives a strong RSSI signal
from one user, it marks the area as a hot area and

recursively traces higher degree Moore’s curves to improve
the localization accuracy. The location of the user is then
determined to be the UAV’s position when it sensed its
strongest signal. While HAWK is customized to localize
lower number of users, we adapted their algorithm to
evaluate the performance of our proposed solution. Cells
with higher importance are assigned higher degree Moore’s
curve for increased localization accuracy.

The adapted HAWK is applied on the same disaster
scenario presented in Figure 7 and the resulting trajectory
to scan the damaged area is traced in Figure 9 . It is
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Fig. 7. The left figure shows a selected area with damage by the tsunami in Indonesia in 2018 [source: Yahoo News]. The right figure shows
the number of readings required by each cell of the damaged area based on its importance, in addition to the trajectory taken by the UAV
when SPVT is applied.

Fig. 8. The left figure plots the average localization error of SPVT
versus the UAV range. The right figure plots the resulting total
number of scanning points versus the UAV range.

evident that the latter approach utilizes a much longer tra-
jectory as compared to SPVT and this is due to increasing
Moore’s curve level in areas with higher required accuracy.
Figure 10 presents the performance of the adapted HAWK
in terms of the average localization error and the average
flight time. We note that the performance of HAWK is de-
pendent on the UAV speed since the UAV collects signals
while traveling along its path. The slower the UAV is, the
more signals can be collected and thus higher accuracy is
expected as demonstrated in the figure. For a low speed of
1 𝑚/𝑠, HAWK achieves its lowest average error of 8.6 m
that steadily increases as the UAV increases its speed.
The flight time needed to traverse the whole trajectory
dictated by HAWK at 1 𝑚/𝑠 exceeds 8000 s (equivalent to
2.22 hours) as per Figure 10. SPVT localization accuracy,
on the other hand, is not based on the UAV speed and,

Fig. 9. The UAV trajectory generated by HAWK to scan the
damaged area.

thus, the UAV can fly at its maximum speed to travel
from one scanning point to another. For a fair comparison,
we estimate the flight time needed by SPVT to achieve
a similar accuracy of 8.6 m. This is attained when the
UAV’s range reaches 100 m causing 42 scanning points as
per Figure 8. At each scanning point, the UAV hovers for
30 s in our simulations to collect multiple RSSI readings
for each device to average out the effect of fading; thus,
the flight time of SPVT constitutes 30 s × 42 = 21 min
in addition to the time needed to travel between scanning
points at maximum UAV speed.
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Fig. 10. HAWK performance results. The left figure plots the average
localization error versus the UAV speed. The right figure plots the
total number of scanning points versus the UAV speed.

V. Testbed Implementation and Evaluation
In order to validate the practicality and effectiveness

of the proposed localization approach, we have designed
and implemented an experimental testbed. This testbed
serves as a proof of concept that demonstrates the solution
to be complete, practical, and can be implemented using
available hardware and software tools. We used the testbed
to conduct experiments in the basketball court at the
Lebanese American University, where we flew a UAV to
localize smartphones distributed in different locations on
the ground. We used a Parrot Bebop 2 UAV [35] to
capture RSSI readings of WiFi signals emitted from the
smartphones. Cellular-based signal scanning can also be
performed; however, this would require installing a cellular
transceiver with scanning capability on the UAV. Without
loss of generality, we adopt WiFi-based scanning in this
testbed due to availability and cost considerations. To do
so, we considered the following two methods:

1) Using the original WiFi adapter of the UAV to
capture RSSI readings in managed mode: this re-
quires adding bash scripts and C programs to the
UAV’s operating system (Arch Linux) to transform
it into a server capturing signals.The drawback of
this method is that the devices need to be in hotspot
mode so their signals could be captured. This might
be a limitation in practice since victims might not
be able to change their mobile devices’ mode after a
disaster takes place.

2) Adding a new USB WiFi adapter to the UAV: this
requires adding and loading the necessary drivers in
the UAV’s kernel to support the new adapter, as
well as adding bash scripts and C code to setup the
interface and make the UAV a server capturing RSSI
readings. The main motivation behind this method
is that the devices do not need to be in hotspot mode
for their signals to be captured by the UAV, as the
newly added adapter can run in monitor mode.

For practical reasons, we resorted to the second method.
For our implementation, we used the official Parrot SDK

Fig. 11. Screen shot of the developed Android mobile application to
compute the UAV trajectory. In this screen shot, a 6𝑚 × 6𝑚 grid is
set with each cell having a side of 1𝑚, and assigned five readings.
The black dots represent the identified UAV’s scanning points.

for Android smartphones. Moreover, we developed an
Android mobile application that takes as input the dimen-
sions of the area of interest and the number of readings
required per cell. The mobile application then computes
the trajectory, connects to the UAV’s server to initiate
WiFi signal capture, and communicates the trajectory to
the UAV so it visits each designated scanning point and
captures all available RSSI signals during a given period
of time. The latter information is sent back to the appli-
cation that executes the localization technique described
in Section III-C to obtain estimates for the locations of all
discovered devices. A screen shot of the developed Android
mobile application is shown in Figure 11.

A. Testbed Results
The implemented testbed is run in a basketball court as

shown in Figure 12. To apply (4), we need to determine
an estimate of the value for 𝛼 in our testing environment.
To do so, we placed one device at different distances from
the UAV and measured the RSSI values; we then used the
data to estimate 𝛼 empirically to be equal to 2.7.

As an example testing scenario, we have placed two
Samsung S5 smartphone devices on a 6𝑚 × 6𝑚 area in
the basketball court at the following coordinates: (2𝑚,1𝑚)
and (2𝑚,3𝑚). We divided the area into multiple cells with
each cell assigned five required readings. The mobile ap-
plication computed the trajectory and the UAV was flown
accordingly at a height of 4𝑚 above the ground level. After
completing the trajectory and collecting all RSSI readings,
the mobile application performed localization. The two
devices’ locations were estimated to be at the following
coordinates: (2.4𝑚, 1.6𝑚) and (2.6𝑚, 2.1𝑚), leading to a
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Fig. 12. Running the testbed in a basketball court using one UAV
and smartphone devices.

localization error of 0.72𝑚 and 1𝑚, respectively. Several
other tests were conducted and led to similar accuracy out-
comes. This demonstrates the practicality of the proposed
solution using existing smartphone devices under regular
configuration and operation.

VI. Conclusions

In this work, we addressed the problem of using UAVs
to localize users in disaster scenes having regions with
varying importance that may be set according to the
damage and/or population level. The whole scene is dis-
cretized into cells and cells are assigned different number
of RSSI readings according to their importance level. The
problem jointly considers identifying scanning points that
can cover all cells with the required number of readings,
constructing an efficient UAV trajectory that visits all
scanning points, and developing a localization mechanism.
We proposed an RSSI-based localization technique that
uses trilateration while accounting for the variability of the
wireless channel. The technique attempts to improve the
localization accuracy with every additional RSSI reading.
To collect the needed number of readings from all cells,
we decomposed the problem into two subproblems, the
first identifies the scanning points using dominating set
and centroidal Voronoi tesselation and the second connects
the scanning points in an efficient path that forms the
UAV’s flight trajectory. Simulation results demonstrated
the effectiveness of our solution and its ability to adapt
to regions with varying importance levels. Moreover, a
small-scale testbed is developed in which the proposed
localization solution is implemented together with its
corresponding algorithms to validate its applicability in
realistic settings. An interesting extension of this work is
to deploy the proposed solution in larger testing scenarios
with more users distributed in different areas subject to
varying levels of importance.
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