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An Infrastructure-Assisted Workload Scheduling for
Computational Resources Exploitation in
Fog-Enabled Vehicular Network

Ibrahim Sorkhoh, Dariush Ebrahimi, Chadi Assi, Sanaa Sharafeddine and Maurice Khabbaz

Abstract—The vehicle-as-a-resource is an emerging concept
that allows the exploitation of the vehicles’ computational re-
sources for the purpose of executing tasks offloaded by passen-
gers, vehicles or even an internet-of-things devices. This paper re-
volves around a scenario where a roadside unit located at the edge
of a hierarchical multi-tier edge computing sub-network resorts
to the utilization of idle vehicles computational resources through
fog-enabled substructure yielding a cost-effective computational
tasks offloading solution. In this context, scheduling the offload of
these tasks to the appropriate vehicles is a challenging problem
that is subject to the interaction of major role playing parameters.
Among these parameters are: the variability of vehicles availabil-
ity and their computational power, the individual tasks’ weighted
priorities and their deadlines, the tasks required computational
power as well as the required data to upload/download. This
paper proposes an infrastructure-assisted task scheduling scheme
where the road side unit receives computational tasks from
different sources and schedule these tasks over a computationally-
capable vehicles residing within the roadside unit’s range. The
aim is to maximize the weighted number of admitted tasks
while considering the constraints mentioned above. Compared
to other works, our work broaches more realistic scenario by
considering a more accurate computational task and system
model. Our system considers both the latency and throughput
of tasks accomplishments by maximizing the weighted number
of admitted tasks while at the same time respecting the tasks
accompanied deadlines. Both radio and computational resources
are part of optimization problem. After proving the NP-hardness
of the scheduling problem, we formulated the problem as a
mixed integer linear program. A Dantzig-Wolfe decomposition
algorithm is proposed which yields to a master program solvable
by the Barrier algorithm and subproblems solved optimally with
a polynomial time dynamic programming approach. Thorough
numerical analysis and simulations are conducted in order to
verify and assert the validity, correctness, and effectiveness of our
approach compared to branch-and-bound and greedy algorithms.

I. INTRODUCTION

Intelligent Transportation Systems (ITSs) currently exhibit a
tangible proof of a remarkable technological evolution. This is
especially true since the massive amount of intelligence they
have gained over time and the various digital services they
can support (e.g. passenger safety, on-the-fly Internet access,
autonomous driving) renders them as major role player in
the realization of smarts cities. ITSs today constitute one of
the integral industry verticals of 5G. This is a consequence
of the notable evolution of vehicular networks lying at the
core of ITSs and constituting their baseline infrastructure that
supports the sophisticated services they provision. Yet, these
systems never cease to experience a continuous upsurge of

end-users demands for in-transit services and applications;
these pushing towards an unparalleled cooperation between the
automotive, electronics and telecommunication industries with
the objective of equipping vehicles with modern ubiquitous
technologies (e.g. server-level computerized modules, wireless
communication devices, etc) that mediate the physical and
digital layers of vehicular networks. Indeed, these advanced
onboard digital systems offer ample computational power and
resources that allow for the deployment of revolutionary Arti-
ficial Intelligence (AI) algorithms that transform vehicular net-
works into continuously evolving groups of connected smart
entities exhibiting inordinate amounts of mobile intelligence.
In particular, this evolving trend gives birth to a novel concept,
namely, the Vehicle-as-a-Resource (VaaR) [1], which aims at
the exploitation of the vehicular computational resources to
instantiate a powerful edge computing platform.

In recent years, the conventional solution of the inflating
computational processing demands in vehicular network was
to offload the intensive tasks over the distant cloud servers
through the Road Side Unit (RSU). Such an RSU-to-Cloud
communication exhibits considerable delays that marginalize
the cloud servers efficiency for handling delay-sensitive ser-
vices; let alone the incurred considerable bandwidth consump-
tion when forwarding tasks in periods of elevated offered
loads. Under such circumstances, Mobile Edge Computing
(MEC) presents itself as an alternative other setting that
yields lower end-to-end delays through the deployment of
computationally-capable servers (a.k.a. cloudlets) at the net-
works edge in close proximity to the RSU (e.g. [2]). However,
these MEC servers inevitably find themselves unable to cope
with high offered loads due to the timely unavailability of
adequate computational resources; this being a limitation that
obliterates MECs’ short latency virtue (e.g. [3]). An early
solution suggested in [3], [4], [5] was to organize cloudlets in a
hierarchy of multiple edge-tiers. With this arrangement, lower-
tier cloudlets are allowed to issue task migration requests to
upper cloudlet tiers. Analytical studies were conducted in [3]
and [5] demonstrating the superiority of Hierarchical MECs
(H-MECs) over typical flat MECs in terms of delay and task
admissibility. However, installation of multiple proprietary
cloudlets and their organization in H-MECs incur considerable
capital and operational expenditures, (e.g. [6]). This motivates
the necessity of an alternative cost-minimal solution that
accounts for both latency requirements as well as the tasks
admissibility. This level is where Vehicular Fog Computing
(VeFC) and the concept of VaaR come into play.



Fog computing is a framework that facilitates the exploita-
tion of computational resources available in the very edge
of the network. By utilizing idle resources in that level, fog
computing can be expanded beyond using the infrastructure
resources to exploiting the computational potential of any
network edge node. Clearly, such a framework will reduce the
end-to-end communication delay and increases the reliability
of the service while reducing the amount of bandwidth con-
sumed in the backhaul network. VeFC broaches the concept
of VaaR by harvesting the vehicles On-Board Unit (OBU)
computational capabilities.

Over a long time, if the vehicles OBUs are only dedicated
for their own vehicles internal processing, their capabilities
most probably will be underutilized. As these vehicles OBUs
possess Al tools, other vehicles that lack such resources can
improve their driving automation potentials through wireless
computational tasks offloading. One of the typical example
in driving automation is Augmented Reality (AR) where the
system creates 3D objects in order to support the driver safety
and avoid traffic jams [7]. A vehicle can request from other
vehicles to sense their surrounding environments, analyze, and
send back the results to the requester to support the creation
of accurate AR objects that support both short-term and
long-term navigation. A vehicle that tries to choose between
lanes can request from other vehicles to evaluate their lanes
condition based on a received or collected information in
order to support the decision of the requesting vehicle [8].
Besides, Internet-of-Thing (IoT) devices and pedestrians may
also benefit from the computational capabilities available on
OBUs. For example, IoT devices, that require a road network
status, may provide vehicles with data, or ask vehicles to
execute some artificial intelligent tasks over some data and
send results back to them. A pedestrian who tries to apply a
heavy task, such as object recognition over a picture, can get
help from nearby vehicles to perform such an energy intensive
and complex task instead of doing it locally.

Enabling VeFC requires tackling several intricate chal-
lenges manifesting the need for an efficient and scalable
task offloading scheme. First, the dynamism of the resource
availability and the tasks’ deadline makes the scheduling
process a cumbersome one. The residence of vehicles within
the coverage of the RSU is limited and any scheduler must
consider this system variability. Second, although the vehicles
OBUs do have sufficient resources, but a task offloaded to
the system usually issues elevated computational demands to
ensure in-time processing. Note that each vehicle prioritizes
its own tasks over offloaded tasks from others. Third, since the
deadline of a task is usually in order of milliseconds, providing
an adequate portion of available radio spectrum should be
sufficiently enough to upload and download data in a timely
manner. Given these challenges, it is critical to equip the RSU
with an efficient scheduler to schedule tasks on OBUs. The
contributions of this paper can be categorized as:

o We propose a system, deployed on RSUs, to collect low-
latency computational tasks offloading requests from dif-
ferent sources, and efficiently schedule them on available
OBUs before exiting the RSUs’ coverage range.

o We mathematically formulate the scheduling problem as

a mixed integer linear program, while taking into account
the dynamic availability of vehicles and their limited
computational capacity.

o To combat the complexity of the problem, after prov-
ing its NP hardness, we propose a scalable solution
based on Dantzig-Wolfe decomposition technique. The
method, using column generation algorithm, decomposes
the problem into a master and multiple pricing sub-
problems. The master sub-problem is solved using barrier
algorithm, and all other pricing sub-problems are solved
using polynomial-time dynamic programming approach.

The remainder of the paper is as follows. Section 2 summa-

rizes related work. Section 3 presents the system model. The
problem is defined in Section 4, followed by the mathematical
formulation in Section 5. The Dantzig-Wolfe decomposition
and the column generation algorithm are discussed in Sec-
tions 5 and 6 respectively. We test our approach and discuss
the results in Section 8, and finally conclude in Section 9.

II. RELATED WORK

Vehicular fog computing is taking a considerable attention
from academia leading to extensive studies addressing major
concerns. In [9], authors used machine learning techniques to
choose the best fog server deployed over a base station to be
connected to a vehicle once it leaves a certain server range.
The work considers the load and the location of the vehicles to
accomplish an accurate prediction for the server. In [10], the
authors suggested a machine learning algorithm that tries to
utilize the vehicles mobility in order to minimize the delay of
the tasks computation. The work proposed an architecture with
three offloading modes, namely, vehicle-vehicle offloading,
vehicle-RSU-vehicle offloading and pedestrian-RSU-Vehicle
offloading. The work discusses why mobility can be useful to
minimize the download time from a node to another. Two case
studies were considered; in the first, an existing ML algorithm
was combined with coded computing to make it adaptable
against the changes in the network topologies and workload.
In the second, they investigated the idea of replicating the
tasks in order to minimize the delay. The authors in [11]
suggested a three layers scheme to support traffic management.
The three layers are the cloud, the cloudlet and the fog
layer. The fog consists of parked and moving vehicles having
a certain computation capability. With this architecture, the
work proposed an algorithm that balance the load over the
layers resources by distributing messages passed by vehicles
over the computation resources in order to process them. A
design principle for fog-enabled vehicular software-defined
networking was suggested in [12]. The design was evaluated
with the use case of traffic management system for fast traffic
rescue using real traffic accident data. In [13], authors tried to
utilize the idle computation resources of the parked electrical
vehicles. The problem was formulated as a Markov decision
process and solved through dynamic programming. The work
in [14] suggested an offloading scheme of tasks generated by
the users equipment to the vehicles based on contract theory
and matching theory. The aim was to minimize the compu-
tation delay. A task is represented by its required number of



computational cycles, the upload data size and the deadline
deadline. The download data size is assumed to be negligible,
meaning, the result of the computation can be downloaded
instantaneously. They can be scheduled in a non-preemptive
manner only. A vehicle is represented by its offered amount
of computational resources it is willing to share and assumed
to have a fixed location. A vehicle can only be assigned one
task. The work assumes a dedicated bandwidth assigned to
each user equipment. First, a contract is designed relating the
required performance levels to the payments issued to vehicles
offering this performance. Then a two-sided matching game
approach is performed to assign the tasks to the vehicles.
In [15], authors proposed a method to take advantage of
the possibility of dividing the tasks offloaded from vehicles
into several subtasks (there is no constraint on how these
tasks can be divided). The work first studied the status of
the channels through hidden markov model and proposed a
scheme to leverage the full parallelism of computational tasks.
The authors in [16] provided a mathematical model that studies
quantitatively the vehicular fog computing capabilities. The
work used a realistic data acquired from tens of thousands of
taxis. For data distribution application, [17] suggested a joint
optimization of access mode selection and spectrum allocation
while considering the randomness of the vehicular network,
the edge cache and the content download delay. VeFC was
applied for various applications like mobile crowd sensing
[18], caching [19], traffic management [20].

For general system architecture and transmission strategies,
[21] suggested a general scheme to build a framework for a
vehicular edge computing system consisting of multiple RSUs
and several computation resources. This work concluded with
an efficient transmission strategy that reduces the V2V and
V2I transmission costs while maintaining a good transmission
speed. The work in [22] proposed a communication protocol
for vehicular multi-access edge computing by integrating
licensed Sub-6 GHz band, IEEE 802.11p and millimeter wave
communications to distribute data in vehicular networks. An
interesting work about the role of fog computing in the context
of Information-Centric Networking (ICN) was proposed in
[23]. The work suggested an integrated fog-computing and
ICN architecture with on-demand caching function virtualiza-
tion scheme and a communication scheme between the fog
nodes and future internet nodes. A smart control was designed
to manage the operations between these nodes and a cognitive
resource allocation as well.

We consider a realistic and general scenario where the
tasks are offloaded by pedestrians, vehicles or IoT devices.
They are characterized by their upload data size, download
data size, computational requirement along with their deadline
and importance. A task is indivisible, it can not be divided
over multiple servers. The scenario of tasks splitting can
be emulated in our system model by considering a set of
tasks issued by one source to be part of one larger task. A
server can accept scheduling more than one task as long the
computational requirements do not exceed the server capacity.
As opposed to minimizing the latency, our aim is to maximize
the weighted number of admitted tasks since these kind of
time-sensitive tasks are accompanied with a certain deadline.

III. SYSTEM MODEL

We consider a network scenario as depicted in Fig. 1; a RSU
is located in a dense urban area and provided with wireless
communication capabilities allowing it to communicate with
vehicles present in its communication range.

The RSU is assumed to be equipped with edge computing
capabilities and renders services to incoming requests. Re-
quests arrive at the RSU and ask for computational processing
and are assumed to be emanating from either incoming vehi-
cles, requesting particular computing and processing beyond
the resources available on the vehicle, or pedestrians or IoT
devices whose computing capabilities are limited. The RSU
schedules tasks and assigns them resources over the cloudlet
co-located with the RSU or over an in-range vehicles (servers)
with available resources demanded by the tasks. Here, it is
assumed that some of the in-range vehicles may have com-
puting capabilities that can be leveraged to offload the tasks
awaiting processing. Our objective is therefore to schedule the
processing of incoming tasks request either at the RSU or at in-
range vehicles, and assign them enough computing resources
to complete processing within their deadlines.

A. Communication Model

The network operates on a radio spectrum allocated for
the communication between the clients and servers; the total
spectrum width is assumed to be B and both uplink and down-
link transmissions are assigned portions of this bandwidth.
Transmissions are assumed to be, for simplicity, orthogonal
to avoid interference. The downlink and the uplink bandwidth
portions are « and 3 respectively (o < B and 5 < B). In our
model, we decide the portion of bandwidth allocated to each
of the links. Let 7(¢) be the rate achieved on the link between
a server and a client, at time t. Then, r(¢) is a function of the
radio spectrum allocated to the link as well as the distance
d(t) separating the client from the server, at time t.

Pxd(t)—°
Ir + N 0 * Q¢
where P is the transmission power, Ny is 2 times the power
spectral density, d(¢) is the distance between the source and
destination at time t, o is the path loss exponent and I, is
the interference. Now suppose the client uploads (download)
a task of size u to/from the server, the time it takes to offload
this task is T, = I* where 7 is the transmission rate achieved
during the offload, which is a function of the instantaneous
rate on the link. Hence, the equation that relates the upload
time 7, the task size u and the rate r(t) is:

Ty +to
"= / r(t)dt %)

to

r(t) = a; x logs(1 + (1)

to is the time a client starts offloading the task. r(¢) depends
on the distance d(t) between the server and the client, where
dt) = [(t x v —t x v2)2 + (t x 0¥ — t x v¥)2]"". Here,
v¥ = v.co8(.) (V¥ = vesin(f,)) and v? = vscos(6;) (VY =
vgsin(ds)) are the x-component (y-component) of the client
and the server velocities, v, and v, respectively and 6. ()

is the angle between v.(vs) and the z-axis. t is the time that
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Fig. 1. Hierarchical MEC-based sub-networking scenario.

has elapsed from the start of the upload time and (0,0) being
the entry point to the coverage of the RSU. This is a complex
integration that is difficult to solve and particularly for this
dynamic environment and for online operation. In order to
overcome this, at each time slot, we calculate the distance
between the clients and the servers in the middle of the slot
and compute the rate accordingly.

B. Computation Model

Our system assumes there is a server available at the RSU
and at each vehicle j € J. The computational capacity of each
vehicle is depicted by its CPU frequency f;. For simplicity, we
assume that each vehicle’s OBU server contains only one CPU.
Each task ¢ € I is characterized by five deterministic values:
upload and download data sizes ; and o; respectively with
their computation requirement c¢;, weight w; which represents
the importance of the task to be scheduled before its deadline,
and deadline §;. The tasks are indivisible tasks, they can not
be partitioned and should be computed by only one server.
A server can not start computing a task unless it receives all
the required data, and can not send back the calculated result
unless it completes the task computation.

C. Problem Definition

The problem input is a set of tasks I = {1,...,4,...,m;}
required to be offloaded from several sources to a set of
servers J available at the RSU and the vehicles’ OBUs
S =1{0,1,...,4,...,n;}. Task i requires a certain application
available only on a subset of these servers, say J; and it
is characterized by its computational cycles required c;, its
upload data size -;, its download data size o;, its deadline
0; and its weight w;. The aim is to find the amount of
computing resources assigned from server j to task i fy ;
in each time unit ¢. Also the radio resource/bandwidth o ;;
(respectively f3; ;;) dedicated for the link used for transmission
of task 7 client and server j. The objective is to maximize the
weighted number of processed offloaded tasks. Note that the

processing of a task can not start until all the required data is
uploaded to the assigned vehicle. Similarly, a task cannot be
downloaded until the processing of the task is finished. The
distance between vehicle j and the source of task ¢ at time
unit ¢ is indicated by df;.

Proposition 1. The scheduling problem defined above is a
NP-hard problem.

Proof. Consider the well-known NP-hard scheduling problem
Plpmtn| > w;U; [24], where there are N tasks with deadlines
to be scheduled over M parallel identical machines in order to
maximize the number of admitted tasks. It is easy to show that
instances of this problem can be reduced to our problem. For
each task in this problem, we may create a task for our prob-
lem having the same specifications without being implicitly
downloaded or uploaded to a certain vehicle. Then we create
M machines similar to the above known NP-hard problem
to process the maximum number of admitted tasks during
the entire time line. By doing so, we reduced the scheduling
problem P|pmitn|>_ w;U; to our problem in polynomial time,
hence our problem is an NP-Hard problem. O

We therefore mathematically formulate the problem as a
mixed integer linear program. Then we propose a decompo-
sition scheme based on Dantzig-Wolfe decomposition method
in Section 6. This method divides the problem into a linear
master problem and multiple pricing sub-problems, which can
be solved in polynomial time through dynamic programming.

IV. MATHEMATICAL MODEL

The RSU receives offloading requests with deadlines. Re-
quests are buffered at the RSU until the offloading decision is
made; the RSU having complete knowledge of the computing
resources on its co-located cloudlets, as well as the computing
resources of in-range vehicles, attempts to maximize the
number of admitted tasks within their deadlines. Here, the time
it takes to offload the task to the cloudlet, and the computing



TABLE I
SYMBOLS USED IN FORMULATING THE PROBLEM

Symbol
a) Parameters

Explanation

1 Set of offloaded tasks

J Set of servers

J; Set of servers that have the application of task 7
T Maximum time segment

B Total spectrum

ci Required number of clock cycles for task %

o; Deadline of task ¢

Yi Upload data size of task ¢

o Download data size of task 7

dﬁ y Distance between vehicle j and the RSU
Time unit length

w; Weight of task ¢

fi Maximum computation capacity of server j

No Power spectral density

« Path loss exponent

b) Variables

fij €R Frequency assigned for task ¢ on server j.

ust € {0,1}  Task i is in upload stage at time ¢ or not.

ps’-% €{0,1} Task 4 is in processing stage at time ¢ or not.

ds% € {0,1} Task 4 is in download stage at time ¢ or not.

atij €R Bandwidth assigned for 7 to be uploaded to server j.

Bti; ER Bandwidth assigned for ¢ to be downloaded from
server j.

z;i; € {0,1} Indicates whether task ¢ is assigned to server j or not.

rdyi; €R Download data rate of task ¢ from server j at time ¢.

rug ;5 € R Upload data rate of task ¢ to server j at time ¢

time on the cloudlet plus the time it takes to send back the

output, must not exceed the deadline of the task.
1

The objective of the mathematical model is:

mamimizeg E Wi Ty

el jeld;

(Obj1)

In words, maximize the weighted number of tasks scheduled
over the servers, subject to the following constraints:

1) Sum of computation resources assigned to the offloaded
tasks to a server can not exceed maximum capacity.

Z Ttizg < fj

iel

VieJ Wt<T (C1)

2) The computation resources assigned to a task from one
server should be sufficient to finish the task.

E ft,ij XA = TijCi

t<T

Viel VjelJ; (C2)

3) A task, if scheduled, is either in upload, compute, or
download stage.
Viel

ust + pst + dst = inj Vit < 6;

jeJ

(C3)

4) The first time unit in the lifetime of each task must be
in the upload stage unless it is decided to be rejected.

1— ..
us; = E Tij

jeJ

Viel (C4H

I'The list of symbols is shown in Table I

5) The last time unit before the deadline of a task must be
in the download stage unless it is decided to be rejected.

5 g
ds;’ = g Tij

jed

Viel (&)

6) Throughout the time, a task can not be in an upload stage
unless it was in the upload stage in the previous time unit.

ust <ust™'  Viel 12<t <4 (Co)

7) In any time unit, a task can not be in a download stage
unless it will be in the download stage in the next time unit.

dst <dsit™  Viel Vt<g; (C7)

8) After the deadline, no activities should be in progress.

usi +psi+dsi=0 Viel Vt>§ (C8)

The bandwidth used for all the transmissions happening in
one time unit can not exceed the total spectrum

Y Bij+Y ey <B  Vt<T (C9)
i€l i€l
JjeJ JjEJ

9) A task can not be assigned a computation resource from
a vehicle unless it is in the computation stage.

frig < fjxpsi Vi€l VjeJ,Vt<T (C10)
10) In each time unit, a task can not be assigned a bandwidth
to download data unless it is in the download stage.
Btij < B x ds! VieIVjeJ,Vt<T (C11)
11) In each time unit, a task can not be assigned a bandwidth
to upload data unless it is in the upload stage.

i < B X usk VicI,Vje J,Vt<T (C12)
12) The download transmission rate for task ¢ is :
pi X (di;) ™7
r = Buij x log |1+ ———1— 3)

Br.ij x No

The upload transmission rate rfjt can be calculated similarly.
13) For each task, the bandwidth should be assigned for the
entire data to be uploaded or downloaded.

S M xA=rixay Vel Vjed; (Cl2a)
t<T
ZTE?XAZW xxi;  Viel VjelJ; (Cl2b)
t<T

Note that constraints C12a and C12b are non-linear. To
linearize them, we apply a well-known technique that is based
on the calculation of the gradient of the bit rate function.

Finally, a task should only be assigned to one server.

Z.Z‘ij S 1

JjeJ

Viel (C13)



V. DANTZIG-WOLFE DECOMPOSITION

Dantzig-Wolfe decomposition technique is a utilization of
an ILP property that several constraints of a problem contain
only a subset of the variables (Blocks structure). These con-
straints, if separated, define an easy-to-solve subproblem. The
approach uses the presentation theorem of a linear program-
ming to encode all the feasible points of the original problem
as an affine combination of the subproblem feasible points.

Now, looking into our problem model, we can infer that only
two constraints have variables of different tasks (C'1 and C9).
All the other constraints contain variables of one task. Hence,
using Dantzig-Wolfe decomposition, we can decompose the
problem into one master problem and /N pricing subproblems.

Let X be the set of points that satisfies all the constraints
of task ¢ except constraints in the sets C'1 and C9. Then
any feasible solution for the problem can be written as affine
combinations of the points in x;; under the condition that it
satisfies C'1 and C9. Let K; be the set of integer points in the
task 7 feasible space. Let x¥ be feasible integer point in task i
feasible space. Then the problem can be re-written as follows:

maximizeg E w; E )\fzf]

i€l jeJ; keK;
s.t.
SN OMF < Yied vt<T (CI)
i€l keK;
Z Z N (BEij+aty) <B VLT (C9)
1€l keK;
jed
doXN=1 viel (Ca)

keEK,;
Mefo,1}//xk € X;

As there are exponential number of points in each Xj,
an efficient way to solve the problem is by relaxing the
variables to linear ones and solving the problem through
column generation (CG) [25]. The next subsection will discuss
our CG approach.

A. The Column Generation Algorithm

As discussed in the previous section, the possible number of
columns of the master problem is exponential. The basic idea
of column generation algorithm is to avoid including all the
possible columns of a problem in the master model tableau.
This is done by making the optimization of the master program
to calculate the dual variables and feed it to the pricing
subproblems. The role of the subproblems is to generate the
columns with the minimum reduced cost using the given dual
values. When the master model converges according to a
certain criteria, the algorithm starts to solve the integer version
of the master problem.

1) Initial solution: We chose to provide an initial so-
Iution with a constructive greedy heuristic. The algorithm
pseudocode is shown in Algorithm 1. The algorithm starts
by sorting the tasks according to their processing times in
ascending order. Then for each task, it sorts the vehicles’

OBUs according to their available computation resources.
Then for each server, it tries to assign it that task. If it succeeds,
it considers the task being scheduled. Otherwise, it resets the
resources as the task was not scheduled. The input of the
greedy algorithms are the set of tasks I, the set of servers
J and the transmission rate between each task-server pair in
each time unit R.

Proposition 2. The time complexity of the greedy approach
in Algorithm 1 is O(N (Mlog(M) + MT)).

Proof. We can sort the tasks with merge sort with complexity
O(N log(N )) Since for each task, we are sorting the servers,
this will take O(N Mlog(M)). Checking for available server
whether the task can fit or not will take O(NMT). So the total
complexity will be O(O(Nlog(N)) + N (Mlog(M)+ MT))
and since the second term is more complex, we can neglect
the first term. O

Proposition 3. The greedy approach in Algorithm 1 always
returns a feasible solution.

Proof. We prove this with loop invariant. The initial step is
when the algorithm tries to schedule the first task. Since the
resources are totally vacant, the algorithm will not find a
problem in detecting the available resources. Hence, all the
”if” conditions on lines 10, 16 , and 23 will be satisfied.
If the task requirement is big enough that all the available
resources can not satisfy it, then the function DeleteT ask
will free all the resources acquired by this task. Otherwise,
the task will be admitted. Up to this point, the solution is
feasible. Now, for all the other tasks, the ”if” conditions on
line 10, 16, and 23 will check whether the resources in a
certain time unit is available or not. If available, the new
task will be assigned this available resources, otherwise it
will check other time units. This will avoid assigning two or
more tasks the same resource at the same time. Again, if the
task requirement is completely satisfied, the task is admitted.
Otherwise, the function DeleteT ask will free all the resources
the current task has acquired. After going through all tasks,
the algorithm will terminate having a certain number of tasks
being admitted and another being rejected without any overlap
between the tasks assigned resources. Hence the final solution
is feasible. O

2) Solving the Subproblems: Let 1);; be the dual variable
corresponding to a constraint in the set C'l, ¢; be the dual
variable corresponding to constraint in set C'9, and (; be the
dual variable of constraint Ca for task ¢. Then the column
generation pricing subproblem for each task is modeled as:

mmzmzzeg Vi fi,ij
jeJ
t<T

+ Z o} Z (oveij + Bij)
t<T  jed
— WiTyj
+ G
s.t.
Xij € X;



Algorithm 1 Greedy algorithm

Function 1 Get feasible solution for one stage

1: procedure GREEDY(I,J, R)

2: Tij < 0 Viel

3 fieTxf Vield

4 sort(I,¢; < c¢iy1)

5 bandwidthAcquired[l...T] < false
6: compAcquired[l...|J|][1..T] + false
7 for e € I do
8 uploaded < 0
9 downloaded + 0

10: computed < 0

11: SOTt(J, fj > fj+1)

12: for j € J do

13: for t < 0:6; do

14: if uploaded < ~; then

15: if lbandwidth Acquired|t] then

16: uploaded += R][i][j][t] X

17: bandwidthAcquired[t] <+ true
18: Beij < B

19: else if computed < c; then

20: if lcompAcquired[j][t] then

21: computed += f; x A

22: compAcquired[j][t] < true
23: ft,ij — fj

24: else if downloaded < o; then

25: if lbandwidth Aquired|t] then

26: downloaded += RJ[i][j][t] x A
27: bandwidth Acquired|t] « true
28: Qt g5 < B

29: if downloaded >= o; then

30: Tij < 1

31: else

32: DeleteTask(i)

o, B}

return {z, f,

By looking into the subproblem objective function and
constraints, we can state the subproblem as follows:

Definition: Given set of time units each with its own weights
for being used only to upload, download or compute the task
in every server, specify the process (uploading, downloading
or computing) and the amount of resource used in each time
unit in one server in order to minimize the total weight.

The solution space of this problem is polynomial in size.
Hence, it is possible to solve the problem using a dynamic
programming approach that can efficiently find the optimum
solution without the need of any branch-and-bound based
algorithm.

Our solution to the subproblem of a specific server-client
pair is shown in algorithm 2. There are three loops in the
algorithm (line 5, 11 and 17). Before the outer loop, the
algorithm calls feasible (shown in Function 1). This function
starts from a time unit given by the parameter il and adds
the resources available in this time unit into a certain stage
(the variable stage). While iterating with a certain direction
(the inc operator) of the time line, the function keeps adding
resources to the stage until it fulfills the task’s stage require-

1: function FEASIBLE(A, amount, price,il, fl,inc)
2: stage.index <+ il

3 while stage.amount < A AND

4 stage.index <= fl do

5: stage.addCurrentIndex(
6

7

8

price[stage.index] )

amount[stage.index]|
inc(stage.index)

removeFExtraPrice(stage)

return stage

Function 2 Remove the extra time units.
1: function UPDATESTAGE(stage, amount, A)
2: index < stage.index()
max Amount < amount[index)]
while stage.amount — maxAmount > A do
stage.deleteItem(index)
index < stage.index()
max Amount + amount|index]

removeExtraPrice(stage)
return stage

R AN

ment (the variable A) or it passes the possible time unit that
can be acquired (fI). For each time unit added, it calculates its
price-amount ratio and adds it to a sorted data structure (i.e., a
red-black tree) for a purpose explained later. Once the function
is done from adding all the necessary time units, the function
calls another function called removeExtraPrice. This function
gets from the stage the time unit with highest price-amount
ratio and keeps only the necessary amount of its resource and
remove the rest from the stage. The first loop in Algorithm 2
iterates starting from the last time unit in the upload stage to
the end of the time line. For these time units, the algorithm
calls the function (feasible) given the index of the upload stage
as the initial time unit. After finding a feasible solution for the
download stage, the algorithm starts another loop iterating over
all the time units available for downloading. In this loop, the
algorithm finds a feasible solution for the processing stage.
The inner loop in the algorithm iterates starting from the
time unit in the processing stage feasible solution until the
index of the download stage. For each time unit, it calculates
its price-amount ratio and checks whether it is smaller than
the maximum price-amount ratio in the processing stage data
structure. If it is the case, it adds the time unit to the data
structure and calls updateStage shown in Function 2. This
function removes all the extra time units having the highest
price-amount ratio until it reaches the exact requirement of the
stage. Once done from the third loop, the algorithm updates
in the same way the the download stage and decrements its
index. Once done from all the time units available for the
download stage, the algorithm updates the upload stage by
applying the same method applied for the download stage and
the processing stage and then increments its index and repeats
the entire process.

Proposition 4. The time complexity of the subproblem algo-
rithms is O(T*)



Algorithm 2 Subproblem Solution

1: procedure SOLVESUBPROBLEM(i, 7,7, @, f;, R)
2:

3 s.up

4 feasible(y;, R[i][j] * A, ¢ % S,0,5;, ++)
5 while s.up.index < §; do

6:

7 s.down < feasible(o;, R[3][j] * A,

8 @ * S, 0;, s.up.index — —)

9 while s.down.index

10: > s.up.index do

11:

12: s.proc < feasible(c;, f; * A,

13: ; * f;, s.up.index, s.down.index + +)
14: while s.proc.index < s.down.index do
15:

16: if s.price > bests.price then

17: bests « s

18:

19: maxRatio < s.proc.maxRatio
20: ratio < W
21: if maxRatio > ratio then

22: s.proc.addCurrentIndex(ratio)
23: updateStage(s.proc, fj, ¢;)

24 s.proc.index + +

25:

26 maxRatio < s.down.maz Ratio()

2T ratio < Tate?}]s[ﬁﬁﬁflgazdjzz*ei]*A

28: if maxRatio > ratio then

29: s.down.addCurrentIndex(ratio)
30: updateStage(s.down, rates[i][j], o;)
31: s.down.index — —

32:

33 maz Ratio <+ s.up.maxRatio()

34: ratio rateq[&}]&[]L]b[I;Tpderz]chSx]*A

35: if maxRatio > ratio then

36: s.up.addCurrentIndex(ratio)

37: updateStage(s.up, rates[i|[4],V:)

38: s.up.index + +

39:

Proof. We start the proof by analysing the third loop (lines 17-
32). In the worst case scenario, comparing the current solution
with the best solution will always lead to copying the current
solution (lines 20-23) leading to complexity of O(T'). Adding
a new element to the data structure can be implemented with
complexity O(T) (line 28). The function updateStage upper
bound is O(T) as well (line 29). So for one iteration, the
time complexity is O(T') and since in the worst case of the
number of iterations is T. Then the complexity of the loop is
O(T?). Now, the second loop (lines 11-41) contain the third
loop (O(T?)), calculates the feasible solution of the processing
stage (line 14) which can be done in O(T') and updates the
download stage time units (lines 34-39) which takes O(T?)
leading to total complexity of O(72). With similar analysis to

the first loop (line 5), we can conclude that the total complexity
is O(T%). O

Proposition 5. The subproblem algorithm always return the
optimal solution.

Proof. Assume that the length of each stage is given. Then,
each stage has a set of time units that it should choose from
to fulfill its requirement while minimizing the cost given
by the dual values. This problem is called the fractional
minimum cost knapsack problem and it can be solved in
polynomial time. To choose the time units, we calculate its
cost-effectiveness ratio (price-amount) then sort the time units
and choose the ones with the smallest ratios. The last time
unit chosen should be partitioned and takes only the required
amount of it so the required resources do not get exceeded
hence increasing the cost.

The algorithm starts by finding the shortest time that can be
assigned to the upload stage to fulfill its requirement (calling
the feasible function). After that it checks all the possible
combinations for the other two stages by going through all the
time units available for the download stage, and accordingly
checking all the available time units for the processing stage.
After adding a new time unit for any stage, the algorithm
applies the following recursive equation:

if ( newUnit.price
newUnit.amount
currentUnit.price
currentUnit.amount

) then

price(t) = price(t — 1)
— price(remove(stage, newUnit.amount))

+ newUnit.price

else

price(t) = price(t — 1)

where the function remove(s,a) takes a stage s and re-
moves the time units with maximum price with total and
amount equals a. To implement that, the algorithm calculates
the cost-effectiveness ratio of the time unit. If one of the time
units currently in the solution has a higher ratio then it adds
the new time unit to the solution and remove any unnecessary
time units (extra) from the solution. By doing so, the algorithm
will always find the set of time units that has the minimum
cost-effectiveness ratio for any length of any stage. Since the
algorithm check all possible lengths of the all the stages, then
the algorithm will definitely find the optimum solution. [

VI. PERFORMANCE EVALUATION

We study here the performance of the proposed methods,
including Mix Integer Linear Programming (MILP) (to get
the optimal solution), Dantzig-Wolfe decomposition method,
and greedy algorithm (Greedy); we consider different perfor-
mance metrics such as: execution time, performance gap, and
weighted rejection rate. We then study the overall weighted



TABLE II

MEASURABLE FACTORS USED FOR THE SCHEDULING PERFORMANCE
Factors Distribution | Mean |Variance
Tasks Arrival (tasks/s) Exponential 4 -
Servers Capacity (GHz) Gaussian 3 0.2
Vehicle’s Velocity Trunc. Gaussian| 25 7
Vehicle’s Arrival (m/s) Geometric |p = 0.1 -
Deadline (s) Gaussian 0.1 0.03
Upload Data Size (MB) Gaussian 1 0.25
Download Data Size (MB) Gaussian 0.1 0.1
Tasks Weight Gaussian 5 3
Number of Cycles (Millions) Gaussian 20 5
Total Spectrum (GHz) - 3 -

rejection rate for the overall system using the Dantzig-Wolfe
decomposition method by varying tasks arrival rate, the ve-
hicles emitting probability, the average upload data size, the
average number of computational cycles, and the average
server size. Vehicular traffic traces are obtained using the
well-known traffic simulator SUMO [26]. Table II shows the
parameters used throughout this section, and the probability
of application availability for a certain task on a particular
server is set to 0.75. We assume an RSU with 500m coverage
range, equipped with one server for processing the offloaded
workloads. We use CPLEX to solve our optimization models
and C++ to simulate the operation of our algorithms, through
a discrete event driven simulation. We generate results on
CPU with Intel(R) Core(TM) i7-6700 CPU @ 2.7GHz, 16GB
memory ram and 64-bit mac operating system. The results are
averaged over ten runs.

A. Scheduling Performance

In this subsection we analyze and evaluate the performance
of our proposed Dantzig-Wolfe decomposition method. First,
we study the scheduling performance of our method versus the
optimal solution obtained from the MILP by considering the
execution time and task rejection rate. We limit the number
of iterations for the Dantzig-Wolfe decomposition method to
100 iterations. Table IIT shows the execution time of the three
methods by varying the problem size as an input instance.
The results are averaged over five samples. From the table,
we can observe that, in terms of execution time, even for a
small size, the Dantzig-Wolfe decomposition method always
surpasses the optimal solution obtained by MILP. For instance,
the computational time requires to solve for five vehicles
with 100 tasks is over 18 hours which is not computation-
ally acceptable for a real scenario. Whereas, the Dantzig-
Wolfe method maintains an acceptable computational time. In
addition, the Dantzig-Wolfe method maintains an acceptable
deviation from the optimal solution even for large instances.
Compared to the greedy method, the Dantzig-Wolfe method
is capable to improve the greedy initial solution from 55% to
a maximum of 71%. For instance, with 15 vehicles, as shown
in the table, the MILP performs relatively much better than
the greedy method. This is because as the number of vehicles
increases, the number of possible solution combinations that
will lead to the optimal value increases. The computational
time of the Dantzig-Wolfe method gets slower with 15 vehicles

compared to 5 vehicles. This is expected since the number of
pricing sub-problems required to solve the column generation
part of the Dantzig-Wolfe decomposition method is increased.
Nevertheless, the execution time compared to the MILP is
extremely incomparable. Note that, for all the input sizes,
the deviation of the Dantzig-Wolfe from the optimal solution
(MILP) is almost the same. Also, it should be noted that the
performance of the Dantzig-Wolfe method can be improved by
increasing the number of iterations, if the system can afford
the time given for tasks scheduling.

From the study and analysis conducted in this section, we
conclude that the Danzig-Wolfe method is the more suitable
and scalable choice for task scheduling in terms of both
execution time and task rejection rate. Hence, in the next
section, to evaluate the performance of our system through
simulation, we use this method for the scheduling stage. But
first, it is interesting to show through an example how the
Danzig-Wolfe method converges to an optimal solution as
proceeding with the number of iterations. Figure 2 shows
how the feasible solution converges for a 15-task input. In
the figure, the upper-bound (i.e., the unfeasible solutions) and
the lower-bound (i.e., the best obtained feasible solutions for
the master problem after certain iterations) are shown by red
thick and black strip lines respectively. As it can be depicted
from the figure, the optimal solution is obtained after 52
iterations which takes one second. The upper bound is obtained
through subtracting the reduced costs coefficients of the new
columns from the current master objective value. The result
is an objective value that can be achieved only if the master
accepts all the new arrvied columns. A scenario that can occur
in very special conditions.
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— Upper bound (infeasible objective value)
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Fig. 2. The convergence of the columns generation algorithm

B. System Evaluation

In this subsection, we study the performance of our sys-
tem by simulating the traffic arrival process using the well-
known urban traffic simulator SUMO. In order to get random
traces, SUMO requires to specify what is called the vehicle
Emitting Probability (EP) per second per lane (SUMO is a
discrete time simulator and this emitting probability is the
geometric distribution parameter for each lane). In addition, it
assumes that the vehicles speed follows a truncated Gaussian
distribution (refer to Table II). The event driven simulation
starts by running SUMO for 1 minute (this is the simulation



TABLE III
COMPARISON BETWEEN THE ALGORITHMS PERFORMANCE IN TERMS OF REJECTION RATE AND COMPUTATION TIME.
Number Number | MILP Dantzig-Wolfe Greedy
of Vehicles | of Tasks | Rej. Rate | Time (s) | Rej. Rate | Dev. Time (s) | Rej. Rate | Dev. Time (s)
50 0.44% 8 18.70% 19.93% | 2 86.70% 86.65% 0.38
5 75 2.23% 197 20.35% 1853% | 4 92.31% 92.132% | 1
100 4.34% 66435 23.51% 18.73 47 95.23% 95.21% 4
50 0.45% 23.7 19.07% 19.32% | 13.25 86.73% 86.66% 1
15 75 0.48% 156.85 22.89% 2324% | 29.45 91.11% 91.07% 2.6
100 0.50% 1378 20.26% 19.95% | 70 93.08% 93.04% 6

time not the actual program execution time) in order to let it
reach the steady state response. Then, we start collecting the
information of the available vehicles in the RSU range for one
minute. The information collected here contains the vehicles
speed, their coordinate per unit time (which is chosen as one
millisecond), their arrival and departure time to and from the
RSU range. In addition, we assign each vehicle a certain
computation capacity following the distribution specified in
Table II. Consequently, we reset the time of the simulator
and start generating tasks request events for each vehicle
and device following an exponential distribution for the the
inter-arrival time (refer to table II), and add the events to a
sorted data structure (i.e., red-black tree). For each certain time
period, we generate a scheduling event, and eventually we add
it to the data structure as well. Afterwards, the event execution
process begins. For each batch of tasks, we start the scheduler,
and once we get the scheduling result, we update the status
of the resources. All the results shown in this subsection are
averaged over 20 samples.

Fig. 3 shows the system performance in terms of weighted
rejection rate compared to the different tasks arrival rate per
vehicle. Three EP values are considered here (0.1, 0.15 and
0.2). As shown in the figure, from 0.2 to 0.8 task arrival
rate, the curves with higher EP values result in lower rejected
rate. Consider here that a vehicle in our system represents a
load, as well as a computation resource. Now, when the tasks
arrival rate is low, along with the higher arrival vehicles, the
overall system capacity maintains a low rejection rate because
any vehicle arrival increases the overall system capacity. On
the other hand, when the tasks arrival rate is more than 1
task/s, the system’s behaviour changes as the arrived vehicles
generates load high enough to make the system uses its
maximum capacity. Hence, in this situation, the rejection rate
increases by increasing the vehicles arrival rate even when the
computational capacity of each vehicle is high.

For a point-to-point comparison, from figure 3, we can
observe that the plot of Ep=0.2 starts with a lowest rejection
rate. For instance, with a tasks arrival rate of 0.2 tasks/s, the
rejection rates of EP=0.1, EP=0.15, and EP=0.2 are around
8.5%, 9.6% and 10% respectively. But, as we increase the
tasks arrival rate, the plot of EP=0.2 inflates faster than the
others, since with a higher vehicles arrival, more tasks will
be generated and hence the system will be overwhelmed
faster. The behaviour of the EP=0.15 curve is similar to the
EP=0.2 but with a lower steep. From the tasks arrival rate of
1 task/s onwards, the behaviour of the two EPs is inverted,
and the differences in number of rejection rates increases with

the increase of the tasks arrival rate. For example, at the
tasks arrival rate of 2 tasks/s (or 5 tasks/s), the rejection rate
differences between the EP=0.1 and EP=0.15, and between
EP=0.15% and EP=0.2% both are 2% (or 4%). As mentioned
earlier, the critical point of the system is when the tasks
arrival rate is 1 tasks/s. Clearly, we can push this point to get
higher than 1 task/s by increasing the system capacity (i.e.,
increasing the average server size). In practice, this can only
be done by increasing the capacity of the RSU server, since the
system operator has no control over the vehicles computational
capacity (either to increase or decrease their capacity).
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Fig. 3. Rejection rate versus tasks arrival rate per vehicle.

Figure 4 plots the weighted rejection rate of the system
versus the emitting probability of the vehicles arrival per lane.
The figure shows the system performance for two different
tasks arrival rates per vehicles (i.e., 2 tasks/s and 4 tasks/s).
While both rejection rates increase at higher EP, the differences
in weighted rejection rate between the two tasks arrival rates
increase as well. For instance, the relative increase in EP
between 0.15 and 0.2 for the tasks arrival rate of 2 tasks/s
is 22%, while for the tasks arrival rate of 4 tasks/s is 25%.
Consequently, the weighted rejection rate at higher vehicles
EP increases linearly. For example, at EP=0.25, the weighted
rejection rate for the tasks arrival rate of 2 tasks/s is 14%,
while the tasks arrival rate of 4 tasks/s is 40%. This is due to
the fact that the 4 tasks/s arrival rate is reaching the system
full-potential usage with higher emitting probability.

Note that the arrival load of the system can be increased
either by increasing the arrival rate or by intensifying the
tasks requirements. Figure 5 demonstrates the system response
in terms of weighted rejection rate as we vary the average
upload data size. For example, when the task data size is 1.5
MB, the weighted rejection rate of the system is around 24%,
whereas, when the data size of the task is 2 MB, the weighted
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Fig. 4. Rejection rate versus vehicles arrival rate.

rejection rate is 26%. This proves that by increasing the data
size of arrival tasks upto the wireless bandwidth capacity, the
percentage of the weighted number of rejected tasks increases
in a nonlinear manner. For instance, the relative increase in
weighted rejection rate from 1.5 MB tasks data size to 2 MB
is around 6%, while the increase is 10% from 2 MB to 2.5
MB data size.
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Average Upload Data Size (MB)
Fig. 5. Rejection rate versus average upload data size per task.

In Figure 6, we calculate the rejection rate for two different
average server sizes (2.5 GHz and 3.0 GHz). As depicted in
the figure, for a small average number of cycles, the system is
capable of admitting almost all tasks, hence, the performance
of the two server sizes are almost the same. As the number
of cycles per task increases, the difference between the two
server sizes starts to increase. For example, for 20 million
cycles, the difference between the two server sizes is around
1% while for 30 cycles, the difference reaches more than 2%.

# Average Server Size 2.5 GHz
@ Average Server Size 3 GHz
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Fig. 6. Rejection rate versus average number of cycles per task.

Finally, We study the system performance by increasing
the average OBU’s server size. Figure 7 shows the system

performance by increasing the average server size for two
different average number of requires cycles (i.e., 10 million
cycles and 30 million cycles). As it can be seen from the
figure, for smaller server sizes, the difference between the two
different number of cycles is relatively large. For example, the
difference between the two is around 24% for 1 GHz average
server size. By increasing the OBU’s server size, the difference
between the two different cycles decreases. For instance, with
2 GHz average server size, the difference between the two
proposed cycles in system rejection rate is 6%, while for 3
GHz average server size, the difference is 4%. This reduction
in the difference of rejection rate between the two different
average cycles is due to the fact that both average load sizes
can be handled easily when the size of the resource is sufficient
enough to handle most of the arriving load.

# Average 10 Megacycles per Task
@ Average 30 Megacycles per Task
50%

1%

32%

22%

Weighted Rejection Rate
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Fig. 7. Rejection rate versus OBU server average size.

VII. CONCLUSION

Fog computing is a promising paradigm that will allow
an efficient utilization of computation resources available and
accessible through wireless communication. 5G technologies
with its low latency and high reliability promises can provide a
platform to enable fog computing establishment upon various
kinds of resources including smart vehicles. In this work,
we proposed a system that can handle computation requests
over vehicular network through an efficient scheduling scheme
that considers the available vehicle OBU computation servers
and the limited radio spectrum in order to efficiently allocate
them for the requested computational tasks. The problem was
formulated as an MILP with the objective to maximize the
weighted number of admitted tasks. Although the problem
is an NP-hard one, we proposed a scalable decomposition
scheme based on Dantzig-Wolfe scheme, which resulted in
polynomial-time solvable subproblems and a linear master
problem. The approach showed an efficient and scalable per-
formance compared to a greedy heuristic and MILP. Several
parameters were considered in the evaluation demonstrating
the robustness of our approach to solve various kinds of the
problem instances.
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