
 

                                    

   Lebanese American University Repository (LAUR) 

Post‐print version/Author Accepted Manuscript 

 

Publication metadata: 

Title:  Linear stability analysis of subaqueous bedforms using direct numerical simulations 
 
Author(s):  Zgheib, N.; Balachandar, S. 

 
Journal: Theoretical and Computational Fluid Dynamics 
 

DOI: https://doi.org/10.1007/s00162‐019‐00487‐x 

How to cite this post‐print from LAUR: 

Zgheib, N., & Balachandar, S. (2019). Linear stability analysis of subaqueous bedforms using 
direct numerical simulations. Theoretical and Computational Fluid Dynamics, 
DOI:  https://doi.org/10.1007/s00162‐01900487x/Handle:   http://hdl.handle.net/10725/11521 

C 2019 

This Open Access post‐print is licensed under a Creative Commons Attribution‐Non 

Commercial‐No Derivatives (CC‐BY‐NC‐ND 4.0) 

 

 

This paper is posted at LAU Repository 
For more information, please contact: archives@lau.edu.lb 

 



LINEAR STABILITY ANALYSIS OF SUBAQUEOUS BEDFORMS USING 

DIRECT NUMERICAL SIMULATIONS 

N. Zgheib1,2
† and S. Balachandar 2 

1School of Engineering, Lebanese American University, Byblos, Lebanon 

2Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA 

Abstract 

We present results on the formation of ripples from linear stability analysis. The analysis is coupled 

with direct numerical simulations of turbulent open channel flow over a fixed sinusoidal bed. The 

presence of the sediment bed is accounted for using the immersed boundary method. The 

simulations are used to extract the bed shear stress and consequently the sediment transport rate. 

The approach is different from traditional linear stability analysis in the sense that the phase lag 

between the bed topology and the sediment flux is obtained from the three-dimensional turbulent 

simulations. The stability analysis is performed on the Exner equation, whose input, the sediment 

flux, is provided from the simulations. We ran 11 simulations at a fixed shear Reynolds number of 

180, but for different sediment bed wavelengths. The analysis allows us to sweep a large range of 

physical and modelling parameters to predict their effects on linear growth. The Froude number 

appears to be the critical controlling parameter in the early linear development of ripples, in contrast 

with the dominant role of particle Reynolds number during the equilibrium stage. We also present 

results from a wave packet analysis using a one-dimensional Gaussian ridge.

                                                      

† Correspondence to:  nadim.zgheib@lau.edu.lb 
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1. Introduction 

Ripples are examples of bedform patterns that result from the instability of an erodible bed of 

particles subjected to the shearing action of an overlying flow field. They are present in Aeolian 

(e.g. Andreotti et al. 2006) and subaqeous (e.g. Baas 1994) environments, and have been even 

observed on the surface of other planets (e.g. Sivestro et al. 2010). They may evolve from a 

completely flat bed and their evolution depends on the flow and particle properties (e.g. Kennedy 

1969). While their formation has been mostly studied under turbulent flow field conditions (e.g. 

Blondeaux 1990), they are also known to form under laminar flows (e.g. Coleman & Eling 2000, 

Ouriemi et al. 2009). 

Before reaching an equilibrium state, ripples go through multiple stages as they evolve from an 

initially flattened bed (e.g. Perillo et al. 2014). Based on a series of flume experiments, Coleman 

& Melville (1996) observed ripples to be first instigated by the occurrence of small sediment 

pileups. These pileups quickly straighten to become locally two-dimensional and interact with 

the overlying flow field to generate further pileups at a downstream location. These newly 

formed pileups, through the same mechanisms that lead to their formation, in turn generate 

additional pileups further downstream. The induced pileups do not form at random downstream 

locations, but rather at some preferred spacing from the parent pileup. Coleman & Melville 

(1996) found this preferred spacing to be weakly dependent on flow conditions and to scale with 

particle diameter. However, as noted by Langlois & Valance (2007), this grain size-dependence 

on the preferred spacing should be taken with caution due to the large dispersion in the data.  

Two main approaches have been principally used to extract the dependence of this preferred 

spacing (or initial wavelength of emerging ripples) on flow and bed parameters. The first is 
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through laboratory experiments (e.g. Baas 1994, 1999, Coleman & Melville 1994, 1996, Rauen et 

al. 2008, Perillo et al. 2014), while the second is through a mathematical/theoretical approach, 

primarily by means of linear stability analysis (e.g. Kennedy 1969, Jain and Kennedy 1974, 

Richards 1980, Charru & Mouilleron-Arnould 2002, Ouriemi et al. 2009b, Fourriere et al. 2010, 

Camporeale & Ridolfi 2011, Colombini & Stocchino 2011,Bohorquez & Ancey 2015, Caruso et al. 

2016). In the case of laboratory experiments, capturing the wavelength of ripples can be quite 

challenging for the following reasons: (i) The amplitude of incipient ripples, at the earliest stages 

of formation, can be very small of the order of a few grains. This requires a measuring device with 

very fine resolution. This is further exacerbated by the rough nature of the particle bed (Langlois 

& Valance 2007). (ii) Owing to the fact that the developing ripples are continuously coarsening 

over time (e.g. Robert & Uhlman 2001, Venditti et al. 2005), the wavelength measurements need 

to be made within a small time window to truly capture the wavelength at the very early stages. 

If averaged over long enough times, measurements are likely to overestimate the wavelength of 

initial development. (iii) Owing to the inherent nature of the problem, the bed measurements 

need to be made over a relatively wide area spanning multiple wavelengths, which requires a 

finite time to execute. It is for this reason that the bed is often temporarily “frozen” during these 

measurements by reducing (or completely shutting down) the overlying fluid flow rate such that 

the shear velocity at the bed is well below the critical shear velocity needed for incipient motion 

(e.g. Nakagawa & Tsujimoto 1984). The bed is then “unfrozen” after the measurements by 

ramping up the fluid flow rate to its previous value. This freezing and unfreezing of the bed could 

affect the natural progression of bedform evolution. (iv) In any physical setting, the flow rate 

cannot instantaneously jump from still conditions to the desired value at which the experiment 
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is conducted. This poses an inconvenience when trying to extract the dependence of the initial 

wavelength on flow parameters, as incipient particle motion is likely to occur before the flow 

reaches its target value. It could then become difficult to associate the observed incipient 

wavelength with the correct fluid flow conditions. 

As for the linear stability analysis, it has its weaknesses; (i) most importantly, processes that occur 

on the grain-scale, in terms of grain motion in response to the hydrodynamic forces acting on it, 

are modelled in terms of an empirical correlation for the bedload. As a result, the accuracy of the 

predictions of the stability analysis are dependent on the fidelity of the bedload transport model. 

(ii) Furthermore, idealizations such as spanwise periodicity often employed in the stability 

analysis are not applicable both under field conditions are even in the controlled laboratory 

experiments. Such differences must be factored when comparing the predictions of the stability 

analysis against corresponding experiments. (iii) Finally, linear (and subsequent weakly-

nonlinear) stability analysis are useful only in explaining the early stages of bed evolution. 

The linear stability approach is rooted in the fact that many scientists agree that ripples develop 

as a result of instability (e.g. Richards 1980, McLean 1990). This instability is associated with a 

positive phase shift between the sediment transport rate and the bed elevation (e.g. Engelund & 

Fredsoe 1982, Bridge & Best 1988,). That is, if the bed height elevation, which is initially flattened, 

is perturbed sinusoidally, then the maximum sediment transport rate does not occur at the crest, 

but rather slightly upstream. This phase shift is necessary for carrying out the stability analysis 

and knowing its correct value is crucial for the accuracy of the results (e.g. Bennett & Best 1995). 

The phase shift depends on a variety of factors pertaining to the fluid flow and sediment bed. 

Perhaps the most important factor, according to Engelund & Fredsoe (1982) is the bed shear 
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velocity. However, computing the phase shift from governing laws of fluid motion and sediment 

transport can be challenging. 

The purpose of the present work is to conduct a linear stability analysis in conjunction with direct 

numerical simulations (DNS) of flow over a non-erodible wavy bed (Zilker et al. 1977, Hudson et 

al. 1996, Cherukat et al. 1998, Calhoun & Street 2001). This approach is different from the 

classical linear stability analysis in the sense that the DNS naturally provide the phase shift 

between the bed shear stress and the bed topology. The Meyer-Peter & Müller (1948) 

relationship is then used to extract the sediment flux from the bed shear stress, and with it the 

phase lag between the sediment flux and the bed topology. Once the phase lag is known, each 

simulation can be used to test for the effects of a variety of parameters on the wavelength of the 

developing ripples.  

This paper is arranged as follows. In Section 2, we discuss the mathematical model and more 

specifically the use of the immersed boundary method to account for the presence of the 

sediment bed. In Section 3, we elaborate on the linear stability analysis and show that it can, in 

the present context, reproduce the wavelength observed in coupled, time-evolving bed-flow 

simulations. We then sweep the parameter space and investigate the effects of a variety of 

physical and modelling parameters in Section 3.3. We further conduct a wave packet analysis by 

studying the evolution of a small amplitude Gaussian ridge in Section 4. Conclusions are drawn 

in Section 5.  

2. Mathematical model 

The physical problem that is being modelled in this study corresponds to a pressure-driven 

unidirectional turbulent flow over a fixed (or for certain cases erodible) bed of sediment particles. 
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In the case of an erodible bed, flow parameters and particle properties are chosen such that the 

dominant mode of transport is bedload with no to little particle saltation or resuspension. 

Bedload-dominated particle transport is usually observed when the flow shear velocity at the bed 

is marginally in excess of the critical shear velocity required for incipient motion of particles. We 

should note at this point that while we resolve large and small-scale flow features such as those 

in the turbulent eddies in Figure 2a, we do not explicitly consider the effects of individual particles 

on the flow field , but rather the collective action of a group of particles. In other words, the bed 

evolution (when the bed is erodible) and the coupling between the bed and the flow are 

investigated at the mesoscale level.  

The present setup is different from particle-resolved simulations (Kidanemariam & Uhlmann 

2014, 2017) in which flow around individual particles is resolved. There, the setup necessitates a 

sub-grain resolution for which the grid must be sufficiently smaller than individual particles or 

grains. These simulations can be computationally very expensive, as they require very fine 

resolution and a correspondingly small enough time step. Another approach has been to resolve 

the mesoscale turbulence while tracking individual grains as Lagrangian particles and allow them 

to interact using discrete element (DEM) approach (Apte et al. 2008,, Nabi et al. 2013; Sun & Xiao 

2016). This approach has the advantage of not needing a bedload transport model. However, 

instead it requires the use of hydrodynamic drag/lift laws and inter-granular contact/collision 

models. As an alternative to the aforementioned fully-resolved and DEM simulations, the flow 

may be resolved using large-eddy or direct numerical simulations, while the evolution of the bed 

may be modelled at the mesoscale using the Exner equation (Chou & Fringer 2010, Escauriaza & 

Sotiropoulos 2011, Khosronejad et al., 2011, Sotiropoulos & Khosronejad 2016). We employ the 
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latter approach in the present study where we utilize a grid that is sufficiently fine to resolve the 

smallest Kolmogorov flow scales, but coarse enough to encompass a number of particles within 

a cell volume. 

The numerical setup consists of a rectangular domain as shown in (Figure 1). Fourier expansions 

are used along the 𝑥 (streamwise) and 𝑦 (spanwise) directions, which require the use of periodic 

boundary conditions. Chebyshev polynomials are used in the vertical 𝑧 direction with free-slip 

boundary condition at the top of the computational domain. The presence of the immersed 

boundary (shown as a shaded flat plane in Figure 1) above the lower boundary of the rectangular 

domain (see inset of Figure 1) renders the actual boundary condition applied at the bottom of 

the computational domain to be not important, since the immersed boundary represents the 

effective lower boundary of the flow. However, since boundary conditions must be imposed at 

all the boundaries of the numerical domain, a zero velocity condition is imposed at the lower 

boundary. We should stress however that the details of this boundary condition are not 

important as reasoned above. 

A constant mean pressure gradient along the 𝑥-direction drives the flow. No pressure gradient is 

imposed along the spanwise 𝑦-direction, and as a result no mean flow exists along that direction 

(only perturbation flow is present). The presence of the fixed (or mobile) bed is accounted for 

using the direct forcing immersed boundary method (IBM) of Uhlmann (2005). More details about 

the method can be found in Uhlmann (2005), Akiki & Balachandar (2016), and more recently in 

Zgheib et al. (2018a,b). Only a brief description of the method is provided at the end of this 

section for completeness. 
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We start first with a brief description of the governing equations. These consist of conservation 

of mass (1) and momentum (2). These conservation equations are integrated using a pseudo 

spectral code (Cortese & Balachandar 1995, Cantero et al. 2007, Shringarpure et al. 2012). If the bed is 

allowed to evolve, the Exner equation (3) (Cayocca 2001, Paola & Voller 2005, Ancey 2010) is used 

to update its position. On the other hand, when the bed is held fixed, only equations (1) and (2) 

are integrated. The volumetric flux of particles 𝒒, which represents the input to the Exner 

equation, is obtained from the flow-induced shear stress at the bottom boundary of the fluid 

domain as defined by the bed. The non-dimensional governing equations for the flow and the 

bed are shown below 

 ∇ ∙ 𝒖 = 0 , (1) 

  
𝐷𝒖

𝐷𝑡
= 𝒆𝑥 − ∇𝑝 +

1

𝑅𝑒𝜏
∇2𝒖 + 𝒇, (2) 

  𝜑
𝜕𝜂

𝜕𝑡
= −∇ ∙ 𝒒 + 𝜀〈|𝒒|〉∇2𝜂, (3) 

In (1) and (2), 𝒖 represents the three components of the velocity field. 𝒆𝑥 is a unit vector in the 

𝑥-direction and here represents the non-dimensional mean pressure gradient. 𝑝 corresponds to 

the perturbation pressure due to turbulent fluctuations, and 𝑅𝑒𝜏 is the shear Reynolds number 

defined using the velocity and length scales as 

  𝑅𝑒𝜏 =
𝑈𝜏

∗𝐻𝑓
∗

𝜈∗
, (4) 

The velocity scale 𝑈𝜏
∗ is the average shear velocity on the bed, and the corresponding pressure 

scale 𝜌𝑓
∗𝑈𝜏

∗2 results in a non-dimensional streamwise pressure gradient of unity, where 𝜌𝑓
∗  is the 

fluid density. 𝐻𝑓
∗ corresponds to the mean flow depth, and 𝜈∗ is the kinematic viscosity of the 
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fluid. The ratio 𝐻𝑓
∗/𝑈𝜏

∗ represents the time scale. The last term on the right hand side of (2), the 

IBM coupling force 𝒇, is the force that is imposed on the immersed boundary to ensure the no-

slip and no-penetration conditions are satisfied at the bed. Here 𝒇 is defined as 

  𝒇(𝒙) = ∑ 𝑭(𝑿𝑖)𝛿(𝒙 − 𝑿𝑖)Δ𝑉𝑖

𝑁𝑖

𝑖=1

, (5) 

where 𝑭(𝑿𝑖) is the force applied at the 𝑖𝑡ℎ Lagrangian marker to enforce the no-slip and no-

penetration condition, 𝛿(𝒙 − 𝑿𝑖) is the discrete delta function used to ensure that the force on 

the 𝑖𝑡ℎ Lagrangian marker only spreads over a few Eulerian grid points surrounding that marker 

(Akiki & Balachandar 2016), and Δ𝑉𝑖  denotes the volumetric weight of the 𝑖𝑡ℎ marker taken here 

as the product of the grid spacings around the 𝑖𝑡ℎ marker. 𝑁𝑖 corresponds to the total number of 

Lagrangian markers. 

Throughout the manuscript, the asterisk denotes a dimensional quantity, while all other 

parameters are to be treated as non-dimensional with respect to the aforementioned scales. 

As for the Exner equation (3), it describes the evolution of an erodible bed subjected to a shearing 

flow. The first term represents the time rate of change of the bed elevation 𝜂, where 𝜑 = 0.6 

corresponds to the volume fraction of the sediment bed under close-packing conditions, and 𝜀 =

4 is an adjustable parameter (Cayocca 2001) that controls the numerical diffusion term. 

A total of 11 fixed-bed simulations were performed, the details of which are shown in Table 1. 

The present resolution of 288 × 96 × 301 grid points along the streamwise, spanwise, and 

vertical directions was chosen to match recent studies by Zgheib et al (2018a,b) for 𝑅𝑒𝜏 = 180. 

The immersed boundary, which describes the surface of the sediment bed, has the same 𝑥-𝑦 
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resolution as the flow with 𝑁𝑥 × 𝑁𝑦 Lagrangian markers.  Additionally, the 𝑥 and 𝑦 positions of 

these markers overlap with the underlying Eulerian grid, whereas the vertical position of the bed 

(i.e. the immersed boundary) does not coincide with the Eulerian grid. We should note that the 

flow is fully turbulent at the selected shear Reynolds number of 𝑅𝑒𝜏 = 180 (Kim et al. 1987, 

Zgheib et al. 2018b). 

We now provide a brief overview on the implementation of the immersed boundary method, 

with more details available in Akiki & Balachandar (2016) and Zgheib et al. (2018a). We define 

two separate grids. The first is the Eulerian grid, which consists of 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 grid points (see 

Table 3). It is at those grid points that the velocity components and pressure are defined and 

temporally updated through the continuity and Navier-Stokes equations. The Eulerian grid points 

are fixed and thus the location of the grid points remain unchanged with time. The second grid, 

which is detached from the Eulerian grid, is termed the Lagrangian grid. This grid consists of 

𝑁𝑥 × 𝑁𝑦 grid points termed markers. It is these markers that make up a surface which defines 

the sediment bed. The 𝑥 and 𝑦 locations of these markers do not change with time and coincide 

with the 𝑥 and 𝑦 locations of the Eulerian grid. However, the vertical coordinate of the markers 

vary with time (for the case of an erodible sediment bed) or remain fixed (in the case of a non-

erodible sediment bed). In any case, the vertical coordinate of the markers will not generally 

match the location of the vertical coordinate of the Eulerian grid. The purpose of the IBM is to 

impose a specific set of conditions on the flow at the location of these Lagrangian markers. In the 

present simulations, the IBM serves to enforce the no-slip and no-penetration conditions to 

simulate the presence of a sediment bed. In other words, the flow velocity is forced to zero at 

the sediment bed.  This is achieved by first computing the velocity at each of the 𝑁𝑥 × 𝑁𝑦 
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Lagrangian markers. This velocity is computed through interpolation from the velocity of the 

adjacent Eulerian grid. Only the nearest three Eulerian grid points along the 𝑥, 𝑦, and 𝑧 directions 

are considered in the interpolation process, so that the total number of Eulerian grid points 

involved in the interpolation process is 9 . We note here that the velocity at the Eulerian grid 

points is weighted by the local Eulerian grid volume Δ𝑥 × Δ𝑦 × Δ𝑧, the product of the grid 

spacing along the three directions. The velocity at each marker is then set to the desired value 

(zero velocity in the present context) by applying a force that is proportional to the difference 

between the desired and actual (interpolated) value at each marker. It is this force that is then 

spread back onto the surrounding Eulerian grid to achieve the aforementioned desired set of 

conditions. The spreading operation involves a discrete delta function to ensure that the 

aforementioned force only applies to the nearest Eulerian grid points. Here again, the weight of 

each Lagrangian marker is given by the local grid volume Δ𝑥 × Δ𝑦 × Δ𝑧. 

We should note here that the physical problem of pattern formation under a shearing turbulent 

channel flow contains a variety of time scales. These include hydrodynamic and bedform 

deformation time scales. The time scales can be represented as a ratio of a length scale to a 

velocity scale. For the hydrodynamic time scale, the bulk velocity may be chosen as the velocity 

scale, whereas the grid spacing (in lieu of the Kolmogorov length scale) and the domain’s height 

may be used as length scales. Therefore, the slow hydrodynamic time scale becomes the ratio of 

the height of the computational domain to the bulk velocity. On the other hand, we may define 

the fast hydrodynamic time scale as the ratio of the grid size to the bulk velocity. As for the 

bedform deformation time scales, we may use the shear velocity as the characteristic velocity 

scale and the wavelength of the bedform as the characteristic length scale. Their ratio would 
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define the slow bedform deformation scale. Alternatively, if we were to use the grain diameter 

as the length scale, then the fast bedform deformation scale becomes the ratio of the particle 

diameter to the shear velocity. 

Table 2 summarizes the aforementioned time scales. We should note here however, that because 

in the present linear stability analysis the bed is held fixed, it follows that the bedform 

deformation scales are no longer applicable and the problem reduces to an open turbulent 

channel flow over a sinusoidal bed, where only the hydrodynamic scales are active. 

3. Linear stability of the Exner equation using direct numerical simulations 

The fluid flow over an erodible bed of particles, may under certain conditions, work (or modify) 

the shape of the underlying erodible bed over which it flows. In fact, when the flow intensity is 

strong, or more specifically, when the flow-induced bed shear stress is above some threshold 

value, the bed topology will be modified by the flow. The Shields diagram (Shields 1936) provides 

a practical means for predicting the aforementioned threshold value under various flow 

conditions and particle properties. Additionally, we may distinguish two flow regimes when the 

shearing flow is strong enough to displace particles and modify the bed. The first regime 

corresponds to the case when the flow is very vigorous such that particle transport occurs 

through resuspension and saltation in addition to bedload (e.g. Engelund 1970). On the other 

hand, when the flow parameters are such that the conditions for incipient motion of particles are 

marginally exceeded, bedload would constitute the dominant mode of transport with little to no 

saltation or resuspension (e.g. Paarlberg et al. 2009). The latter of the two regimes is the focus 

of the present study. 
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Coleman & Melville (1996) argued that the earliest bedforms that form are instigated by the 

presence of random pileups within the bed. These pileups straighten and form downstream 

pileups at some preferred wavelength. The newly formed pileups in turn generate additional 

pileups further downstream at the same preferred wavelength, and this process repeats until the 

entire bed is seeded with these incipient bedforms. Zgheib et al. (2018a) were able to reproduce 

these early time dynamics as described by Coleman & Melville (1996) using direct numerical 

simulations. They found the temporal and spatial evolution of the bed in the vicinity of a sand 

pileup to resemble the evolution proposed in the theory of Coleman & Melville (1996). Here we 

are attempting a different approach using linear stability analysis to study the very early stages 

of bedform development. 

Under turbulent flow conditions, the inception of bedforms from a completely flat bed is a result 

of the near-bed turbulent structures. Such structures include hairpin vortices and cane-shaped 

quasi-streamwise vortices which are readily visible in Figure 2a. In fact, these vortices are likely 

responsible for the emergence of quasi-spanwise streaks which later grow and merge to form 

the incipient ripples. Figure 2a shows iso-surfaces of the swirling strength 𝜆𝑐𝑖 = 15 in the bottom 

half of the computational domain. The swirling strength helps to locate the hairpin vortices by 

identifying regions of intense vortical structures (Zhou et al. 1999, Chakraborty et al. 2005). It is 

defined as the absolute value of the imaginary portion of the complex eigenvalue of the velocity 

gradient tensor. 

When the bedform amplitudes are very small, such as those used in the present stability analysis, 

their instantaneous effect on the overlying flow is very subtle. For example, it is not possible to 

identify the shape of the bed by analyzing the instantaneous vortical structures in Figure 2a or 
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the instantaneous overlying flow field in Figure 2b. This behavior is also evident in the iso-

contours of the instantaneous wall shear stress (or alternatively the bed-normal gradient of 

tangential velocity in panel (c)). We should note that the snapshots in all panels of Figure 2 

correspond to the same instance when the flow has reached a stationary state. 

On the other hand, once the stationary flow has been time-averaged for a sufficiently long period, 

the imprint of the bed on the flow becomes apparent (Calhoun & Street 2001). In Figure 3 we 

plot the time- and span-averaged bed-normal gradient of tangential velocity (𝜕〈𝑢̅𝑡〉/𝜕𝑛) versus 

the streamwise coordinate 𝑥. Here, 𝜕〈𝑢̅𝑡〉/𝜕𝑛 = ∇〈𝑢̅𝑡〉 ∙ 𝒏, where 〈𝑢̅𝑡〉 is the streamwise-aligned 

bed tangential velocity, and 𝒏 is unit vector pointing in the bed-normal direction. From the 

streamwise variation of 𝜕〈𝑢̅𝑡〉/𝜕𝑛, we can readily identify the shape of the bed. In fact, 𝜕〈𝑢̅𝑡〉/𝜕𝑛 

varies in the same sinuous manner as the bed, but with a positive phase shift. That is, the peak 

of 𝜕〈𝑢̅𝑡〉/𝜕𝑛 occurs upstream of the corresponding peak of the bed height 𝜂 (see Figure 3i). It is 

this phase shift that is crucial for the present linear stability analysis. 

3.1 Fourier decomposition 

We perform a linear stability analysis with a small sinusoidal disturbance to an otherwise flat, 

non-erodible bed using the Exner equation (3). The prescribed sinusoidal disturbance to the bed 

is spanwise invariant. However, while the stability analysis is two-dimensional (does not 

incorporate spanwise dependence), the simulations are fully three-dimensional, since three-

dimensionality is essential to sustain wall turbulence. The restriction to two-dimensional 

perturbations is mainly motivated by the observation of two-dimensional ripples. We note here 

that even three-dimensional disturbances in the form of Gaussian bumps quickly become two-



15 
 

dimensional. We will discuss below how we bridge the two-dimensional stability analysis and the 

fully three-dimensional simulations.  

Since the stability analysis is spanwise invariant, we only need to consider a simplified form of 

the Exner equation with no spanwise dependence, i.e. the 1-D Exner equation 

 𝜑
𝜕𝜂

𝜕𝑡
+

𝜕𝑞̅

𝜕𝑥
− 𝜖𝑞̿

𝜕2𝜂

𝜕𝑥2
= 0 . (6) 

In the above, 𝑞̅ is the bedload volumetric flux of particles and 𝑞̿ is the mean bedload flux over the 

entire bed. Here and in the remainder of the manuscript, the two overbars denote spatial 

averaging along the streamwise (𝑥) and spanwise (𝑦) directions. The mathematical expression is 

included in Table 3. These quantities are computed using the bed shear stress of the three-

dimensional simulations presented in Table 1 as follows. Once the flow reaches a stationary state, 

it is span and time averaged to yield the corresponding span and time averaged bed shear stress 

〈𝜏∗̅〉(𝑥). 〈𝜏∗̅〉(𝑥) is then used to compute the average Shields number 〈Θ̅〉(𝑥), which in turn is 

needed to compute 𝑞̅(𝑥) and 𝑞̿. More specifically, as indicated in Table 3, which provides a 

comprehensive list of the variables used in this study as well as notation and nomenclature, the 

span and time averaged quantities are expressed as 

 

〈Θ̅〉 =
〈𝜏∗̅〉

(𝜌𝑝
∗ − 𝜌𝑓

∗) 𝑔∗𝑑𝑝
∗
 

𝑞̅ =
𝑅𝑒𝑝

𝑅𝑒𝜏
 𝑐1(〈Θ̅〉 − Θ𝑐𝑟)𝑐2 

𝑞̿ =
𝑅𝑒𝑝

𝑅𝑒𝜏
 𝑐1(〈Θ̿〉 − Θ𝑐𝑟)

𝑐2
 , 

(7) 
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where 𝑐1 and 𝑐2 are parameters of the bedload transport model. Note that while the bed is held 

fixed in the direct numerical simulations, we are performing the stability analysis to anticipate its 

early time evolution, and thus 𝜂 becomes implicitly time dependent in the stability analysis. In a 

similar fashion, the bedload flux 𝑞̅ is treated as a time dependent variable in the analysis. 

The modified Exner equation in (6) is the only expression needed to carry out the stability 

analysis. The simulations serve to provide the input to (6) in the form of Θ̅, from which 𝑞̅ and 𝑞̿ 

are computed. As such, the stability analysis does not require an “ad-hoc” phase shift between 

the bed shear stress and the bed topology (e.g.,  Colombini 2004; Vesipa et al. 2012). 

The stability analysis consists of first Fourier expanding 𝜂(𝑥, 𝑡) and 〈Θ̅〉(𝑥, 𝑡) up to the first order 

terms 

 
𝜂 = 𝜂0 + 𝜂1𝑒𝛼1𝑡𝑒

𝐢
2𝜋𝑥

𝜆 + 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒 + 𝐻𝑂𝑇 

〈Θ̅〉 = 〈Θ̅〉0 + 〈Θ̅〉1𝑒𝛼1𝑡𝑒
𝐢
2𝜋𝑥

𝜆 + 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒 + 𝐻𝑂𝑇 . 

(8) 

In the above, 𝜂0 = 0 is the mean bed elevation, and 〈Θ̅〉0 = 〈Θ̿〉. The coefficients 𝜂1, 〈Θ̅〉1, and 𝛼1 

are complex: 

 𝜂1 = 𝜂1𝑅 + 𝑖𝜂1𝐼    ;     〈Θ̅〉1 = 〈Θ̅〉1𝑅 + 𝑖〈Θ̅〉1𝐼    ;     𝛼1 = 𝛼1𝑅 + 𝑖𝛼1𝐼 . (9) 

However, since the prescribed sinusoidal disturbance is of the form 𝜂 = 𝛿 cos (
2𝜋𝑥

𝜆
) as shown in 

Figure 4, it follows that 𝜂1𝐼 is identically zero and 𝜂1𝑅 = 𝛿. As for the Shields number 〈Θ̅〉1, we 

note that the presence of a non-zero imaginary component indicates a phase shift between the 

shear stress and the bed topology. We know from previous studies (e.g. Bennett & Best 1995) 

that such a phase shift is necessary for the bed to be unstable. Finally, the exponential time 

coefficients, 𝛼1𝑅 and 𝛼1𝐼 represent the growth rate and phase speed of the bedform, respectively. 
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One of the main objectives of the linear stability analysis is to find the growth rate and phase 

speed of the most amplified mode. That is, we are interested in identifying the wavelength 𝜆 in 

Figure 4, for which 𝛼1𝑅 is a maximum. Substituting (7), (8) and (9) into (6) and equating terms of 

the same order, we arrive at a system of two equations with two unknowns 𝛼1𝑅 and 𝛼1𝐼. These 

may be solved to obtain 

 

𝛼1𝑅 = (
𝑅𝑒𝑝

𝑅𝑒𝜏
 𝑐1(〈Θ̿〉 − Θ𝑐𝑟)

𝑐2−1
)

2𝜋

𝜆𝜑
[𝑐2

〈Θ̅〉1𝐼

ℎ1𝑅
− 𝜀(〈Θ̿〉 − Θ𝑐𝑟)

2𝜋

𝜆
] 

𝛼1𝐼 = −
𝑅𝑒𝑝

𝑅𝑒𝜏
 𝑐1(〈Θ̿〉 − Θ𝑐𝑟)

𝑐2−1
 𝑐2

2𝜋

𝜆𝜑

〈Θ̅〉1𝑅

ℎ1𝑅
  . 

(10) 

While the above relations show some explicit dependence on parameters such as 𝑅𝑒𝜏 and 𝑅𝑒𝑝, 

we should be careful not to assume that the dependence on such parameters is as shown 

explicitly in (10). For example, as we will show later on, it is true that 𝛼1𝑅 generally increases with 

𝑅𝑒𝑝, however this increase is not necessarily linear. We need to keep in mind that the Shields 

number (see Table 3) also depends on parameters that affect 𝑅𝑒𝑝 such as particle diameter and 

particle density.  

Equation (10) provides some indication on how various parameters affect the stability of the bed. 

Perhaps the least interesting scenario is that for which 〈Θ̿〉 < Θ𝑐𝑟 or in other words for which the 

mean shear stress on the bed is less than the critical shear stress needed for incipient motion. 

For this case, the bed is immobile and stable. A more interesting setting is for which 〈Θ̿〉 > Θ𝑐𝑟. 

For this case the magnitude of the phase speed will increase as the mean Shields number 

increases above the critical value Θ𝑐𝑟. Also we find the magnitude of the phase speed to be 

proportional to 〈Θ̅〉1𝑅. On the other hand for 𝛼1𝑅, we are interested in how the magnitude and 

sign of this growth coefficient vary. The larger the amplitude, the faster the bed develops and the 
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sooner the bedform patterns evolve. A positive growth rate indicates that the amplitude grows 

(unstable setting), while a negative growth rate (stable setting) indicates that any perturbation 

to the bed would decay over time. 

For the case of 𝛼1𝑅, the dependence is not as straightforward as for 𝛼1𝐼. Here, there are two 

competing terms which include the excess shear stress term 〈Θ̿〉 − Θ𝑐𝑟. Depending on the 

relative magnitude of each term, the outcome may vary. What is certain is that a positive phase 

shift between the bed topology and bed shear stress (i.e. 〈Θ̅〉1𝐼 > 0) is necessary for the bed to 

become unstable. If no positive phase shift exists or if the phase shift is very small such that the 

term in the square brackets in (10) is negative, then 𝛼1𝑅 < 0 and the bed is stable. 

The reason a critical positive value of 〈Θ̅〉1𝐼 is needed for instability is due to the second term 

within the square parenthesis in the equation for 𝛼1𝑅. This term arises from the third term (i.e. 

the diffusion term) in (6). The purpose of this diffusion term is to supress short wavelength 

instability. From (10), we observe this diffusion term to be proportional to the diffusion 

coefficient 𝜀 and inversely proportional to the wavelength 𝜆. This means the shorter the 

wavelength is, the larger the tendency to suppress it. 

Because of the implicit and non-linear dependence of 𝛼1𝑅 and 𝛼1𝐼 on a variety of factors, it is 

difficult to anticipate how they will vary from a qualitative examination of (10). We perform a 

parametric study in Sections 3.3.1 and 3.3.2 to investigate the dependence of 𝛼1𝑅 and 𝛼1𝐼 on 

physical and modelling parameters, respectively. 

While the exponential coefficients were obtained through a linear stability analysis of the 1-D 

Exner equation (6), the simulations in Table 1 were performed for the primary purpose of 



19 
 

obtaining the bed shear stress and consequently the bedload flux. In fact, from the knowledge of 

near bed turbulence at other 𝑅𝑒𝜏 values (Zilker et al. 1977, Hudson et al. 1996, Cherukat et al. 

1998), the stability analysis can be easily reproduced at those 𝑅𝑒𝜏 values. 

3.2 Linear stability analysis for a specific set of parameters 

While the temporally-evolving Gaussian bump simulations presented in Zgheib et al. (2018a) 

were very useful in dissecting the various stages of evolution depicted in Coleman & Melville’s 

(1996) theory, the simulations are only representative of the specific set of conditions used 

therein. In the present study, we test the applicability of linear stability analysis in predicting the 

initial evolution of an erodible bed with the advantage that the same simulation could be used 

to predict the initial stages of bedform evolution for a wide range of parameters. On the other 

hand, the stability analysis is only useful for the early linear stages of bed evolution unlike the 

erodible bed simulations in which the bed and the flow can interact non-linearly and evolve 

continuously in a complex manner. 

In Figure 5, we show a plot of the growth rate and wave speed versus wavelength for two cases 

with parameters corresponding to two simulations from Zgheib et al. (2018a). Both cases have 

the same particle Reynolds number 𝑅𝑒𝑝 = 4.34, but different Froude numbers 𝐹𝑟𝜏 = 0.032 

(panels (a) & (c)) and 𝐹𝑟𝜏 = 0.019 (panels (b) & (d)). The dashed vertical line in panels (a) and (c) 

mark the value of the wavelength 𝜆 for which 𝛼1𝑅 attains its maximum value, i.e. the most 

amplified mode. This wavelength, which we will term 𝜆𝑚𝑎𝑥 is likely to be the wavelength of the 

early bedforms observed under these flow and bed conditions. In fact, we find the values of 𝜆𝑚𝑎𝑥 

for the cases in Figure 5 and those observed in Zgheib et al. (2018a) to be in good agreement 
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with one another as shown in Table 4. Table 4 shows the preferred spacing of bedforms from the 

temporally and spatially evolving coupled bed-flow simulations against the most amplified 

wavelength from the present linear stability analysis. The first two rows in the table correspond 

to the plots in Figure 5. The simulation parameters from Zgheib et al. (2018a) in the first row of 

Table 4 in fact encompass multiple cases. All these cases have the same Froude and particle 

Reynolds numbers, however the size, number, and placement of the sediment pileups at the start 

of the simulation varied. By direct comparison between the first and third rows in Table 4, we 

find the effect of 𝑅𝑒𝑝 on 𝜆𝑚𝑎𝑥 to be minor as the value of 𝜆𝑚𝑎𝑥 remains unchanged in both the 

simulations of Zgheib et al. (2018a) and the present analysis. Needless to say that this is only 

pertinent to the parametric set of those two simulations. Nonetheless, as we will show in Section 

3.3, the effect of 𝑅𝑒𝑝 on 𝜆𝑚𝑎𝑥 appears to be marginal for a wide range of parameters. 

We should note here that the agreement between the present stability analysis and Zgheib et al. 

(2018a) does not constitute a full validation since the fixed bed simulations used in the stability 

analysis are a truncation of the mobile bed simulations in Zgheib et al. (2018a). 

3.3 Sweeping the parameter space 

The plots in Figure 5 and the corresponding data in Table 4 are valid for a specific set of flow and 

particle parameters, namely those used in the simulations of Zgheib et al. (2018a). In the case of 

the DNS of an evolving bed, new simulations are required in order to investigate different flow 

and particle parameters, or implement a different model for sediment transport. With the 

present approach of linear stability analysis, provided 𝑅𝑒𝜏 remains unchanged, no new 

simulations are required to sweep the particle parameters or to test different sediment transport 
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models. This is because in this linear stability analysis, once the bed shear stress is known, the 

stability analysis can be carried out for a wide set of physical or modelling parameters. 

The bed shear stress constitutes the only simulation output needed in the analysis, which in turn 

represents the input to the Exner equation. The key bed shear stress results from the frozen 

sinusoidal bed simulations are shown in Figure 6 and tabulated in Table 5. Panel (a) shows the 

plane (streamwise and spanwise) and time averaged bed-normal gradient of tangential velocity, 

whereas panels (b) and (c) show the ratio of the first order bed-normal gradient of tangential 

velocity to the amplitude of bed height perturbation for the in-phase and out-of-phase 

components, respectively. These components are obtained through a Fourier decomposition as 

indicated in (8), namely 

 𝜕〈𝑢̅𝑡〉/𝜕𝑛 = 𝜕〈𝑢̿𝑡〉/𝜕𝑛 + (𝜕〈𝑢̅𝑡〉/𝜕𝑛)1𝑒𝛼1𝑡𝑒
𝐢
2𝜋𝑥

𝜆 + 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒 + 𝐻𝑂𝑇 . (11) 

The three terms plotted in Figure 6 represent the simulation output that is sufficient to carry out 

the linear stability analysis. The mean component in panel (a) produces the 〈Θ̿〉 term, which 

appears in both expressions for the growth rate and phase speed in (10). On the other hand, the 

in-phase and out-of-phase components determine the phase speed (〈Θ̅〉1𝑅) and the growth rate 

(〈Θ̅〉1𝐼), respectively. 

For the fixed value of 𝑅𝑒𝜏 = 180, the simulation output of a specific mode (i.e. for a fixed value 

of 𝜆) in terms of the bed shear stress, becomes only a function of the bed perturbation amplitude 

𝛿. Here the value of 𝛿 must be chosen small enough to obtain a linear response in the shear stress 

to the wavy bottom (Charru et al. 2013). Charru et al. (2013) argued that the response is linear 

when the ratio 2𝛿/𝜆 < 0.03. For all the simulations in the present study, this condition was 



22 
 

satisfied and the ratio varied between 3.3 × 10−4 ≤ 2𝛿/𝜆 ≤ 5.3 × 10−3. Additionally, from 

Figure 6a, we find 𝜕〈𝑢̿𝑡〉/𝜕𝑛 to vary by less than 3% as 𝜆 decreases from 1 to 1/16. This indicates 

that the effects of the pressure drop due to the increased number of waves are minimal and the 

effective shear Reynolds number for all the simulations in Table 1 is nearly identical. To facilitate 

the use of the DNS data presented in Figure 6 for future modellers, we use a saturation growth 

curve fit for the data in panel (a), and a power law fit for the data in panels (b) and (c). The 

equations for each fit along with the coefficients are shown below. 

 

Saturation fit:        𝜕〈𝑢̿𝑡〉/𝜕𝑛 =  175.7
𝜆

𝜆 + 0.02309
   

Power law fit:        
(𝜕〈𝑢̅𝑡〉/𝜕𝑛)1𝑅

h1R
=  3888𝜆−1.245   

Power law fit:        
(𝜕〈𝑢̅𝑡〉/𝜕𝑛)1𝐼

h1R
=  2200𝜆−0.4748

 

(12) 

3.3.1 Physical parameters 

The parameters that may potentially affect the maximum growth rate (𝛼1𝑅,𝑚𝑎𝑥), wave speed of 

most amplified mode (|𝜆𝑚𝑎𝑥 𝛼1𝐼,𝑚𝑎𝑥|), and the wavelength of the most amplified mode (𝜆𝑚𝑎𝑥) 

may be split into two categories. The first category corresponds to physical parameters such as 

𝑅𝑒𝜏, 𝑅𝑒𝑝, 𝐹𝑟𝜏, and 𝜒. Here, 𝐹𝑟𝜏 and 𝜒 represent the Froude number and mean bed inclination, 

respectively (see Table 3). Whereas the second category consists of modelling parameters such 

as 𝑐1, 𝑐2, and 𝜀. To investigate the effects of physical parameters, we considered a wide range of 

values for 𝑅𝑒𝑝, 𝐹𝑟𝜏, and 𝜒. Recall, that all simulations had a fixed 𝑅𝑒𝜏 = 180. In Figure 7, we show 

the dependence of maximum growth rate, wavelength and wave speed of most amplified mode 

on the physical parameters. In all panels, we fix two of the physical parameters and allow the 
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third to vary to isolate its effect on incipient bed formation. As for the modelling parameters, 𝑐1 

and 𝑐2 correspond to the Wong & Parker (2006) modified MPM model and 𝜀 = 4 was used as 

the diffusion coefficient (Cayocca 2001, Zgheib et al. 2018a,b). Unless otherwise stated, these 

aforementioned values will constitute the default values of the modelling parameters and will be 

used throughout the study. 

In panels (a) to (c), we observe 𝛼1𝑅,𝑚𝑎𝑥, |𝜆𝑚𝑎𝑥 𝛼1𝐼,𝑚𝑎𝑥|, and 𝜆𝑚𝑎𝑥 to increase with 𝐹𝑟𝜏. However, 

as can be seen from the figure, the rate of increase depends on 𝐹𝑟𝜏. Since 𝑅𝑒𝜏 is held fixed, then 

from panels (a) and (b) we find that for the same flow rate per unit width, the shallower the flow 

the quicker the emergence of bedforms and the faster the speed of these incipient bedforms. 

Additionally, the shallower the flow the larger the separation distance between incipient 

bedforms. 

The variation in panels (d) and (e) is non-monotonic, unlike in panel (f) where 𝜆𝑚𝑎𝑥 continuously 

decreases with 𝑅𝑒𝑝, consistent with the findings of Charru et al. (2013). . In fact, for the range of 

values considered for 𝐹𝑟𝜏 (0.02 ≤ 𝐹𝑟𝜏 ≤  0.19) and 𝜒 (−25° ≤ 𝜒 ≤ 25°) we find a monotonic 

decrease in 𝜆𝑚𝑎𝑥 over an 𝑅𝑒𝑝 range of 1 ≤ 𝑅𝑒𝑝 ≤ 150. On the other hand, if 𝐹𝑟𝜏 > 0.1 and 𝜒 ≤

0 (flat or downslope), then the decrease in wave speed (|𝜆𝑚𝑎𝑥 𝛼1𝐼,𝑚𝑎𝑥|) becomes monotonic 

over the entire 𝑅𝑒𝑝 range considered. However, for steep upslope currents, larger values of 𝐹𝑟𝜏 

would be required to maintain a monotonic decrease in 𝜆𝑚𝑎𝑥  𝛼1𝐼,𝑚𝑎𝑥 for the considered range 

of 𝑅𝑒𝑝. The growth rate on the other hand remains non-monotonic and attains a minimum value 

for all 𝐹𝑟𝜏 and 𝜒 values considered. The value of 𝑅𝑒𝑝 at which this minimum occurs depends on 
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𝐹𝑟𝜏 and 𝜒. The larger the Froude number, or the smaller 𝜒 is, the larger the value of 𝑅𝑒𝑝 at which 

the minimum occurs. 

Finally, in panels (g) to (i), we observe a monotonic dependence. This monotonic behaviour is 

also observed for all considered values of 𝑅𝑒𝑝 and 𝐹𝑟𝜏. For increasing values of 𝜒, we find the 

growth rate and wave speed to increase, while the spacing between incipient bedforms 

decreases. 

By generating a multitude of plots with a wide range of parameters, we find 𝜆𝑚𝑎𝑥 to be most 

sensitive to variations in 𝐹𝑟𝜏 when the latter is small, ie. 𝐹𝑟𝜏 ≲ 0.06 (Note here that as indicated 

in Table 3, the Froude number is based on the shear velocity and not the bulk velocity. If 𝐹𝑟𝑏 

denotes the latter, then 𝐹𝑟𝑏/𝐹𝑟𝜏 ≈ 15.6). For example, an increase in 𝐹𝑟𝜏 from 0.02 to 0.06 

results in approximately a 60% increase in 𝜆𝑚𝑎𝑥. Whereas a two order of magnitude increase in 

𝑅𝑒𝑝 from 1.5 to 150 is necessary to achieve the same magnitude of variation in 𝜆𝑚𝑎𝑥. Changes 

in the mean channel slope appear to have the lowest impact on incipient bedform spacing. 

Similarly for incipient bedform speed and growth rates, the Froude number appears to be the 

dominant physical parameter followed by 𝑅𝑒𝑝 and 𝜒. 

In the case of ripples, it is well established that the spacing of bedforms at near equilibrium is 

strongly dependent on particle size and consequently on 𝑅𝑒𝑝, with little dependence on the shear 

velocity, and consequently on 𝐹𝑟𝜏 (e.g. Yalin, 1977, Flemming 2000, Claudin & Andreotti 2006). 

However, the relationship between the wavelength of fully developed and incipient ripples is still 

an open issue (Fourriere et al. 2010). In our simulations, we observe 𝐹𝑟𝜏 to be the dominant 

parameter for the incipient wavelength and 𝑅𝑒𝑝 to play a secondary role. This observation, which 
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is derived from the linear stability analysis is consistent with the early time evolution of the 

erodible bed direct numerical simulations of Zgheib et al. (2018a). It is also consistent with the 

fact that the bed shear velocity is a key parameter affecting the phase shift between sediment 

flux and bed topology (Engelund & Fredsoe 1982). The phase shift being of paramount 

importance in the stability of the bed. It still remains to be fully explained how the incipient linear 

dependence change over time to the final nonlinear dependence of the near-equilibrium 

bedforms.  

3.3.2 Modelling parameters 

As discussed previously, the bed is fixed and the flow is fully resolved. However, since the stability 

analysis is performed on the Exner equation (6), the analysis entails modelling of microscale 

processes. The modelling aspects that we are considering here are twofold: (i) the fitting 

coefficients from the empirical modelling of the bedload flux in terms of the bed shear stress and 

(ii) the diffusion coefficient in the Exner equation 𝜀. We adopt the Wong & Parker (2006) modified 

MPM (Meyer-Peter & Müller 1948) formulation to compute the bedload flux. This section tests 

the sensitivity of the formation of incipient bedforms on these modelling parameters, namely 𝑐1, 

𝑐2, and 𝜀. However, since the dependence on 𝑐1 can be easily deduced from (10), we will only 

investigate the sensitivity of incipient bedforms on 𝑐2 and 𝜀. Similar to Figure 7, Figure 8 shows 

the dependence of 𝛼1𝑅,𝑚𝑎𝑥, |𝜆𝑚𝑎𝑥 𝛼1𝐼,𝑚𝑎𝑥|, and 𝜆𝑚𝑎𝑥 on 𝑐2 and 𝜀 by varying each parameter 

separately over a prescribed range while holding the other fixed. Additionally, physical 

parameters also need to be specified. While the curves shown in Figure 8 correspond to a specific 

set of parameters, the conclusions have been drawn from consideration of a wide range of 
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parameters. In panels (a) to (c), we investigate the dependence on the power exponent of the 

MPM bedload model (𝑐2). For the set of parameters considered, we observe, at relatively small 

values of 𝑐2, enhanced growth rates and wave speeds with increasing 𝑐2 values. The opposite is 

true for relatively large values of 𝑐2. On the other hand, the variation in 𝜆𝑚𝑎𝑥 is monotonic, 

decreasing with increasing values of 𝑐2. 

The dependence of incipient bedforms on 𝑐2 is strongly associated with other parameters such 

as 𝑅𝑒𝑝 and 𝐹𝑟𝜏. Nonetheless, as in the case of physical parameters in Figure 7, we observe 

monotonic variation in 𝜆𝑚𝑎𝑥 with 𝑐2. For all cases considered, we find 𝜆𝑚𝑎𝑥 to decrease with 

increasing the MPM power coefficient 𝑐2. The range over which 𝜆𝑚𝑎𝑥 varies as 𝑐2 is modified 

increases for larger values of 𝐹𝑟𝜏 or smaller values of 𝑅𝑒𝑝. That is to say, if in Figure 8c the value 

of 𝐹𝑟𝜏 = 0.06 is used instead of 𝐹𝑟𝜏 = 0.03, then 𝜆𝑚𝑎𝑥 would have decreased from 4.3 to 1.5 

(instead of from 2.7 to 1.3) when 𝑐2 is increased from 1 to 2. This is also true for the growth rate 

and wave speed in panels (a) and (b). The range over which the growth rate or wave speed varies 

increases as larger 𝐹𝑟𝜏 or smaller 𝑅𝑒𝑝 values are considered. Nonetheless, because of the 

complex interaction of physical and modelling parameters in (10), it is difficult to setup regions 

for monotonic behaviour for 𝛼1𝑅,𝑚𝑎𝑥 or |𝜆𝑚𝑎𝑥 𝛼1𝐼,𝑚𝑎𝑥|. 

As for the diffusion coefficient 𝜀, its purpose is to dampen bedforms with very small wavelengths. 

As such, we observe 𝜆𝑚𝑎𝑥 in panel (f) to increase with increasing values of 𝜀. Additionally, we 

observe in panels (d) and (e) a monotonic decrease in growth rate and wave speed with a 

stronger diffusion term. The response to 𝜀 is monotonic for all cases considered. 



27 
 

In Table 6 we show the trend for the growth rate, wave speed, and wavelength of the most 

amplified mode as a function of the physical and numerical parameters from Sections 3.3.1 and 

3.3.2, respectively. We note the following 

i. The variation in 𝜆𝑚𝑎𝑥 is monotonic for all variables considered. 

ii. The variation with respect to 𝐹𝑟𝜏 is monotonic. 𝛼1𝑅,𝑚𝑎𝑥, |𝜆𝑚𝑎𝑥 𝛼1𝐼,𝑚𝑎𝑥|, and 𝜆𝑚𝑎𝑥 

increase with 𝐹𝑟𝜏. 

iii. The variation with respect to 𝜒 is monotonic. 𝛼1𝑅,𝑚𝑎𝑥 and |𝜆𝑚𝑎𝑥 𝛼1𝐼,𝑚𝑎𝑥| increase with 𝜒, 

while  𝜆𝑚𝑎𝑥 decreases with 𝜒. 

iv. The variation with respect to 𝜀 is monotonic. 𝛼1𝑅,𝑚𝑎𝑥 and |𝜆𝑚𝑎𝑥 𝛼1𝐼,𝑚𝑎𝑥| decrease with 

𝜀, while  𝜆𝑚𝑎𝑥 increases with 𝜀 
v. The variation with respect to 𝑅𝑒𝑝 and 𝑐2 is non-monotonic and depends on a variety of 

factors. 
vi. For cases in which the 𝐹𝑟𝜏 is held fixed, the larger the value of 𝐹𝑟𝜏, the larger the range 

over which 𝛼1𝑅,𝑚𝑎𝑥, |𝜆𝑚𝑎𝑥 𝛼1𝐼,𝑚𝑎𝑥|, and 𝜆𝑚𝑎𝑥 vary. 

4. Evolution of a Gaussian bedform wavepacket  

In verifying Coleman & Melville’s (1996) theory on bedform initiation, Zgheib et al. (2018a) 

conducted a series of simulations where a small two-dimensional Gaussian bump (Gaussian along 

both horizontal directions) was introduced to an otherwise flattened bed. The presence of the 

bump constituted a disturbance to the flow, which accelerated the formation of incipient 

bedforms. Zgheib et al. (2018a) observed that regardless of the size of the bump (provided it is 

of the order of a few particles), the bump straightened and progressively led to the formation of 

a train of incipient bedforms at a preferred spacing 𝜆𝑝 as shown in Figure 9. The setup for these 

“Gaussian bump” simulations is similar to the present setup except that the bed was allowed to 

evolve in response to the overlying turbulent flow. 

Figure 9 shows a top view snapshot of the bed at 𝑡𝑏 = 47 (see Table 3 for definition) with iso-

contours of bed elevation 𝜂 from the 2D Gaussian bump simulations of Zgheib et al. (2018a). The 

bed shows the presence of three incipient bedforms at a preferred spacing 𝜆𝑝. The first bedform 
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on the left evolved from the initial 2D Gaussian bump, whose initial 𝑥-𝑦 location is marked on 

the figure by a solid black circle. The subsequent bedforms progressively formed after the 

Gaussian bump flattens, becoming locally two-dimensional. To provide a quantitative value of 

𝜆𝑝, we performed a two-dimensional Fourier decomposition of 𝜂 at the instance shown in the 

figure. The amplitude (𝐴) of the two largest amplified streamwise modes are highlighted in the 

subset of Figure 9. All the streamwise modes were obtained for a zero spanwise mode, i.e. 𝑘𝑦 =

0. We find 𝑘𝑥 = 8 (highlighted in red) and 𝑘𝑥 = 10 (highlighted in blue) to be the most significant 

modes. Recall that the streamwise length of the domain is 𝐿𝑥 = 12, and thus the modes 𝑘𝑥 = 8 

and 𝑘𝑥 = 10 signify a wavelength of 1.5 and 1.2, respectively. Thus, the result shown in Figure 8 

is consistent with the quantitative result of 𝜆𝑝 = 1.4 in the figure. 

Since the same preferred spacing 𝜆𝑝 was observed for various dimensions of the Gaussian bump 

(Zgheib et al. 2018a), one may argue that this preferred separation 𝜆𝑝 is independent of the 

bump, which led to the formation of this train of incipient bedforms. If this is the case, then the 

separation distance 𝜆𝑝 must be tied to some other inherent length scale, in the flow or with the 

particle parameters. This idea is further supported by the fact that for an initially perfectly 

flattened bed, incipient bedforms formed at the same preferred spacing 𝜆𝑝. The emergence of 

the incipient bedforms was however delayed in comparison to the case where a Gaussian bump 

was initially present. Thus, the presence of the Gaussian bump acted as a catalyst to speed the 

evolution of the bed. 

Because of the nearly two-dimensional nature of the train of incipient bedforms in Figure 9, we 

carried out an additional simulation that corresponds to the one-dimensional version of the 
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Gaussian bump simulation in Zgheib et al. (2018a). Instead of a 2D Gaussian bump that varied 

along both horizontal directions, we use a one-dimensional Gaussian ridge with the same 

amplitude and width as the bump, but that extends across the entire width of the channel. The 

bed height elevation at the start of the simulation may be expressed by the following Gaussian 

profile 

 𝜂 =  𝐴𝑅𝑒𝑥𝑝 [−
(𝑥 − 𝑥0)2

2𝛿𝐵
2 ] , (13) 

where 𝐴𝑅 = 0.02 and 𝛿𝐵 = 0.1 represent the amplitude and width of the ridge, respectively. 

There values are identical to those used in the Gaussian bump simulation shown in Figure 9. This 

simulation is different from those described in Section 3. Here, the bed is allowed to evolve in 

response to the bed shear stress according to (3). However, the start of the simulation occurs 

once the flow has reached a stationary state. That is, the bed remains fixed until the turbulent 

flow becomes fully developed, and only then is the bed allowed to evolve. As seen in Figure 10, 

the effect of the ridge is different from the bump in terms of the spacing or preferred wavelength 

of the newly formed incipient bedform. Figure 10 shows a top view at 𝑡𝑏 = 0 (panel (a)) and 𝑡𝑏 =

47 (panel (b)). The bed at the start of the simulation is completely flat except for the presence of 

the Gaussian ridge. After the bed is allowed evolve, we observe the new incipient bedform to 

form at a distance of 1.9 flow depths, which is more than 30% larger than the preferred spacing 

observed for the Gaussian bump simulations in Figure 9. 

In the case of the three-dimensional bump, the flow is allowed to negotiate its path over and 

around the bump. On the other hand, for the two-dimensional ridge, the flow may only go over 

the ridge. This results in a longer wake downstream of the ridge, which in turn causes a larger 
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downstream distance affected by the ridge. This is despite the fact that both the ridge and bump 

have the same amplitude and width and share the same flow and particle properties. However, 

the larger spacing between the original ridge and the newly formed bump could also be affected 

by other factors such as the initial amplitude and width of the Gaussian ridge.  

One may argue that the isolated bump is more relevant, as compared to the Gaussian ridge, to 

the early time evolution of bedforms from an initially flat bed. This is because the near bed 

turbulent flow field is inherently three-dimensional, and as such the initial perturbation to the 

underlying flat bed is correspondingly three-dimensional. 

We should note here that in the present simulations, only the meso scale turbulence is resolved, 

while the microscale flow around the individual sediments (or pseudo turbulence) is not resolved. 

In this approach the carrier phase governing equations have been implicitly averaged on a scale 

an order of magnitude large than the sediment diameter and the DNS is of this implicitly averaged 

flow. As a result the bed has been resolved only at the meso-scale, i.e, on a scale an order of 

magnitude (or more) larger than the individual sediment.  

Thus, in the present simulations, each Eulerian grid cell on the bed contains a large number of 

sediment, whose collective motion dictates the evolution of the bed at the meso-scale. The 

simulations are therefore only resolved at the mesoscale for both the flow as well as the sediment 

– i.e, both the flow and sediment motion are resolved only on scales much larger than a sediment 

diameter. It is in this sense of meso-scale collective motion of sediment we use the MPM 

modified Wong & Parker (2006) formulation. 
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5. Conclusions 

We presented results from linear stability analysis on the incipient motion of ripples in a 

turbulent, open-channel unidirectional flow. The analysis was coupled with direct numerical 

simulations of flow over both fixed, and erodible, sediment bed. The immersed boundary method 

was used to account for the presence of the bed by forcing the no-slip and no-penetration 

conditions at the bed-fluid interface. A total of 11 fixed-bed simulations were carried out at the 

same shear Reynolds number of 180. In each of these simulations, the sediment bed (i.e. the 

immersed boundary) was sinusoidally perturbed along the streamwise direction (i.e. with no 

spanwise variation) with different wavelengths. We should note here that while the bed topology 

is two-dimensional and therefore does not admit any spanwise variation, the simulations are fully 

three-dimensional.  

Linear stability analysis was performed using the Exner equation with input extracted from the 

simulations in the form of sediment flux. To that end, after the simulations run long enough to 

reach stationary conditions, the bed shear stress from each simulation was span and time 

averaged. The sediment flux is then computed from this averaged shear stress using the MPM 

formulation. One of the main advantages of this approach is that the phase shift between the 

sediment flux and the bed topology comes out naturally from the simulations.   

The main purpose of the paper was to assess the dependence of the incipient bedforms on a 

variety of parameters. To that end, we performed a parametric study where we varied multiple 

physical and modelling parameters. In the case of physical parameters, we varied the Froude and 

particle Reynolds number as well as the mean bed slope. As for the modelling parameters, we 

varied the coefficients in the MPM formulation as well as the diffusion coefficient in the Exner 
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equation. We found the most unstable mode, 𝜆𝑚𝑎𝑥, to vary monotonically with all considered 

parameters. More specifically, we found 𝜆𝑚𝑎𝑥 to increase with Froude number and decrease with 

mean channel slope and particle Reynolds number. 

We found the Froude number to be the controlling parameter for initial bedform development 

while the role of all the other parameters considered was found to be less critical when compared 

to the Froude number. This is in contrast with the dominant role of the particle Reynolds number 

during the equilibrium stage of bedforms, at least in the case of ripples. Moreover, for the cases 

in which the Froude number is held fixed, the larger its value, the larger the range over which the 

dominant wavelength, growth rate and phase speed of incipient bedforms varied. The results 

from the linear stability analysis were in good agreement with previously published data on time 

evolving, coupled, bed-flow direct numerical simulations (Zgheib et al. 2018 a, b).  

In addition to the fixed-bed simulations, a wave packet analysis was also conducted. Here a small 

amplitude, one-dimensional Gaussian ridge was allowed to evolve under a stationary turbulent 

flow. The analysis on the wave packet revealed a larger incipient wavelength than that produced 

by the two-dimensional Gaussian bump with identical height and width. This was attributed to 

the fact that in the case of the two-dimensional bump, the flow is allowed to negotiate its path 

over and around the bump. On the other hand, for the one-dimensional ridge, the flow may only 

go over the ridge, which results in a larger downstream distance affected by the ridge. 
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Tables & Figures 

Table 1.  List of fixed bed simulations with streamwise sinusoidal perturbation. 𝜆 and 𝛿 are the 
wavelength and amplitude of the sinusoidal disturbance of the bed. 

Simulation 
number 

𝑅𝑒𝜏 𝜆 𝛿 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 

S0 180 ∞ 0 12 × 4 × 1.005 288 × 96 × 301 
S1 180 𝐿𝑥/1 2 × 10−3 12 × 4 × 1.005 288 × 96 × 301 
S2 180 𝐿𝑥/2 2 × 10−3 12 × 4 × 1.005 288 × 96 × 301 
S3 180 𝐿𝑥/3 2 × 10−3 12 × 4 × 1.005 288 × 96 × 301 
S4 180 𝐿𝑥/4 2 × 10−3 12 × 4 × 1.005 288 × 96 × 301 
S6 180 𝐿𝑥/6 2 × 10−3 12 × 4 × 1.005 288 × 96 × 301 
S8 180 𝐿𝑥/8 2 × 10−3 12 × 4 × 1.005 288 × 96 × 301 

S10 180 𝐿𝑥/10 2 × 10−3 12 × 4 × 1.005 288 × 96 × 301 
S12 180 𝐿𝑥/12 2 × 10−3 12 × 4 × 1.005 288 × 96 × 301 
S14 180 𝐿𝑥/14 2 × 10−3 12 × 4 × 1.005 288 × 96 × 301 
S16 180 𝐿𝑥/16 2 × 10−3 12 × 4 × 1.005 288 × 96 × 301 

 

Table 2.  Hydrodynamic and bedform deformation time scales. 

 
Hydrodynamic 

time scale 

Bedform deformation 
time scale 

Fast 
Bulk velocity

Grid spacing
 

Shear velocity

Grain Diameter
 

Slow 
Bulk velocity

Domain height
 

Shear velocity

Bedform wavelength
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Table 3.  Symbols, notation, and nomenclature definition. (* denotes dimensional quantity). 

Variable/Notation Symbol Mathematical expression 

Mean flow depth (length scale) 𝐻𝑓
∗ - 

Shear velocity (velocity scale) 𝑈𝜏
∗ - 

Time scale Ψ∗ 𝐻𝑓
∗/𝑈𝜏

∗ 

3D velocity vector 𝒖 - 
Unit vectors along the streamwise, spanwise, vertical, 

bed-tangent, and bed-normal directions 
{𝒆𝑥 , 𝒆𝑦 , 𝒆𝑧, 𝒆𝑡, 𝒆𝑛} - 

Bulk velocity 𝑈𝑏
∗ 

1

𝐿𝑦𝐿𝑧
∫ ∫ 𝒖 ∙ 𝒆𝑥

𝐿𝑧

0

𝐿𝑦

0

𝑑𝑧𝑑𝑦 

time 𝑡∗ - 

Bulk time 𝑡𝑏 𝑡∗𝑈𝑏
∗/𝐻𝑓

∗ 

Bed volume fraction 𝜑 - 
Diffusion coefficient 𝜖 - 

Bed elevation (w.r.t mean) 𝜂 - 

Particle diameter 𝑑𝑝
∗  - 

Particle density 𝜌𝑝
∗  - 

Fluid density 𝜌𝑓
∗  - 

Submerged specific gravity 𝑅 (𝜌𝑝
∗ − 𝜌𝑓

∗)/𝜌𝑓
∗  

Gravitational acceleration 𝑔∗ - 
Fluid kinematic viscosity 𝜈∗ - 
Fluid dynamic viscosity 𝜇∗ - 

Particle Reynolds number 𝑅𝑒𝑝 
1

𝜈∗ √𝑅𝑔∗𝑑𝑝
∗3 

Shear Reynolds number 𝑅𝑒𝜏 𝑈𝜏
∗𝐻𝑓

∗/𝜈∗ 

Froude number 𝐹𝑟𝜏 𝑈𝜏
∗/√𝑔∗𝐻𝑓

∗ 

Bed-normal velocity gradient 𝜕𝑢/𝜕𝑛 - 

Bed shear stress 𝜏∗ (
𝜇∗𝑈𝜏

∗

𝐻𝑓
∗ )

𝜕𝑢

𝜕𝑛
 

Shields number Θ 𝜏∗/[(𝜌𝑝
∗ − 𝜌𝑓

∗)𝑔∗𝑑𝑝
∗ ] 

Critical Shields number on a flat bed (𝜒 = 0) Θ𝑐𝑟0 
1

2
[0.22 𝑅𝑒𝑝

−0.6 + 0.06 𝑒𝑥𝑝(−17.77 𝑅𝑒𝑝
−0.6)] 

Critical Shields number on a non-flat bed (𝜒 ≠ 0) 
(Chiew & Parker 1994) 

Θ𝑐𝑟  Θ𝑐𝑟 = Θ𝑐𝑟0 cos(𝜒) [1 +
tan(𝜒)

tan(𝜒𝑟)
] 

Volumetric flux per unit widthℵ 𝑞 𝑞 = (𝑅𝑒𝑝/𝑅𝑒𝜏) 𝑐1(Θ − Θ𝑐𝑟)𝑐2 

Volumetric flux with averaging 𝑞̅, 𝑄 see (7) 
Bed perturbation amplitude 𝛿 - 

Bed perturbation wavelength 𝜆 - 
Mean bed inclination 𝜒  

Angle of repose 𝜒𝑟 𝜒𝑟 = 𝜋/6 

Bed perturbation growth rate (complex quantity) 𝛼1 - 

Numerical domain size (streamwise × spanwise × vertical) 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 - 

Numerical resolution 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 - 

Time average of quantity ∎ 〈∎〉 
1

𝑇
∫ ∎

𝑡1+𝑇

𝑡1

𝑑𝑡 

Spanwise average of quantity ∎ ∎̅ 
1

𝐿𝑦
∫ ∎

𝐿𝑦

0

𝑑𝑦 

Stream and span average of quantity ∎ ∎̿ 
1

𝐿𝑥𝐿𝑦
∫ ∫ ∎

𝐿𝑥

0

𝐿𝑦

0

𝑑𝑥𝑑𝑦 

nth order of Fourier expansion of quantity ∎ ∎𝑛 - 
Real and imaginary components of complex quantity ∎ ∎𝑅 & ∎𝐼  - 
ℵ Based on MPM (1948) (𝑐1 = 8, 𝑐2 = 1.5) and MPM modified Wong & Parker (2006) models (𝑐1 = 4.93, 𝑐2 = 1.6)  
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Table 4.  Most amplified wavelength from the temporally and spatially evolving simulations of 
Zgheib et al. (2018a) and the present linear stability analysis. The two bolded rows correspond to 
the cases in Figure 5. 

𝐹𝑟𝜏  𝑅𝑒𝑝 
𝜆𝑚𝑎𝑥 

(Zgheib et al. 2018a) 
𝜆𝑚𝑎𝑥 

(stability analysis) 

𝟑. 𝟐𝟕 × 𝟏𝟎−𝟐 𝟒. 𝟑𝟒 ~𝟏. 𝟒ℵ ~𝟏. 𝟓 

𝟏. 𝟗𝟐 × 𝟏𝟎−𝟐 𝟒. 𝟑𝟒 ~𝟏. 𝟐 ~𝟎. 𝟗𝟑 

3.27 × 10−2 0.84 ~1.4 ~1.5 

 ℵ Same value of 𝜆𝑚𝑎𝑥 was observed for a variety of bump dimensions, and for different spacing 
of bumps when multiple bumps were present 

 

Table 5.  Tabulated data from Figure 6. 

𝜆  𝜕〈𝑢̿𝑡〉/𝜕𝑛 (𝜕〈𝑢̅𝑡〉/𝜕𝑛)1𝑅/ℎ1𝑅 (𝜕〈𝑢̅𝑡〉/𝜕𝑛)1𝐼/ℎ1𝑅 

12 175 151 658 

6 175 385 901 

4 175 762 1156 

3 174 1158 1351 

2 174 1931 1668 

1.5 173 2589 1893 

1.2 173 3190 2061 

1 172 3732 2212 

0.857 171 4238 2293 

0.75 170 4727 2348 

 

Table 6.  Trend in growth rate, wave speed, and wavelength of most amplified mode for physical 
and modelling parameters. 

 𝐹𝑟𝜏  ↗ 𝑅𝑒𝑝  ↗ 𝜒 ↗ 𝑐1 ↗ 𝜀 ↗ 

𝜆𝑚𝑎𝑥 
↗ 

monotonically 
↘ 

monotonically 
↘ 

monotonically 

↘ 
monotonically 

↗ 
monotonically 

|𝜆𝑚𝑎𝑥 𝛼1𝐼,𝑚𝑎𝑥| 
↗ 

monotonically 
Depends on 

other parameters 
↗ 

monotonically 

Depends on 
other parameters 

↘ 
monotonically 

𝛼1𝑅,𝑚𝑎𝑥 
↗ 

monotonically 
Depends on 

other parameters 
↗ 

monotonically 

Depends on 
other parameters 

↘ 
monotonically 
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Figure 1.  Numerical domain showing the time and plane-averaged velocity profile for the case of 
a fixed flat bed (S0). Periodic boundary conditions are enforced in the 𝑥 and 𝑦 directions. Free-
slip and no-penetration are enforced at the top surface and no-slip/no-penetration conditions 
are enforced at the immersed boundary. The lower numerical domain shown in the bottom inset 
is rendered meaningless by the presence of the immersed boundary. The upper inset shows the 
lower extent of 𝐿𝑧 and 𝐻𝑓. 𝐿𝑧 corresponds to the distance between the top and bottom domain 

boundaries, whereas 𝐻𝑓 which always has a non-dimensional value of unity represents the 

distance between the top domain boundary and the mean bed height elevation. 
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Figure 2.  a) Iso-surfaces of the instantaneous swirling strength 𝜆𝑐𝑖 = 15 (see text for definition) 
above the immersed boundary displaying hairpin and horseshoe vortices. b) Iso-contours of the 
instantaneous velocity in a vertical plane above the immersed boundary. c) Iso-contours of the 
instantaneous bed-normal gradient of tangential velocity 𝜕𝑢𝑡/𝜕𝑛. In panels (b) and (c), the 
vertical 𝑧-direction is stretched by a factor of 50 to clearly show the sinusoidal shape of the bed. 
All figures correspond to the same instance of the fully developped turbulent flow from case S4. 
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Figure 3.  Streamwise variation of the span- and time-averaged bed normal gradient of tangential 
velocity (𝜕〈𝑢̅𝑡〉/𝜕𝑛)  (red solid line) for all cases in Table 1. The shape of the bed (black dashed 
line) is also included to indicate the phase shift between the two curves. The phase shift increases 
with the wavelength of the sinusoidal bed.  

 

 

 

 

Figure 4.  Shape of the bed (i.e. immersed boundary) for the two-dimensional linear stability 
analysis. The 𝑧-direction is stretched by a factor of 200 to illustrate the sinusoidal nature of the 
perturbation. The inset shows the true amplitude 𝛿 versus the wavelength 𝜆 of the perturbation. 
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Figure 5.  Growth rate 𝛼1𝑅 versus wavelength 𝜆 obtained from the simulations in Table 1 for a) 
𝐹𝑟𝜏 = 0.032 & 𝑅𝑒𝑝 = 4.34 and c) 𝐹𝑟𝜏 = 0.019 & 𝑅𝑒𝑝 = 4.34. b) and d) Same as a) and c) but for 

the aboslute value of the wave speed versus 𝜆. The dashed line in a) and c) corresponds to the 
value of 𝜆 for which 𝛼1𝑅 is a maximum.  
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Figure 6.  Direct numerical simulation output needed for linear stability analysis. a) Mean bed-
normal gradient of tangential velocity. b) and c) Ratio of first order bed-normal gradient of 
tangential velocity to amplitude of bed height perturbation for the in-phase and out-of-phase 
components, respectively. The black solid curves in each panel correspond to the proposed fitting 
curves (see text for more details). 

 

Figure 7.  Growth rate, wave speed, and wavelength of most amplified mode versus physical 
parameters. 𝑅𝑒𝑝 = 1 and 𝜒 = 0 in a) to c), 𝐹𝑟𝜏 = 0.058 and 𝜒 = 0 in d) to f), and 𝑅𝑒𝑝 = 10 and 

𝐹𝑟𝜏 = 0.058 in g) to i). 



45 
 

 

Figure 8.  Growth rate, wave speed, and wavelength of most amplified mode versus 𝑐2 (𝜀 held 
fixed at 𝜀 = 4) and 𝜀 (𝑐2 held fixed at 𝑐2 = 1.6). For all cases, 𝑅𝑒𝑝 = 10, 𝐹𝑟𝜏 = 0.032, and 𝜒 = 0. 

 

Figure 9.  Top view of an erodible bed from Zgheib et al. (2018a) at a time 𝑡𝑏 = 47 showing three 
incipient bedforms separated by a distance of 𝜆𝑝. Contours are for bed elevation 𝜂. The bed was 

perfectly flat except for the presence of a small Gaussian bump whose initial location is marked 
by the black circle as initial disturbance. Inset) 2-D Fourier decomposition of 𝜂 provides a 
quantitative measure for 𝜆𝑝 (see text for details). Flow is from left to right. 

 

Figure 10.  Top view from the Gaussian ridge simulation at a) 𝑡𝑏 = 0 and b) 𝑡𝑏 = 47. At 𝑡𝑏 = 0, 
the bed is flat except for the presence of the Gaussian ridge. By 𝑡𝑏 = 47, an incipient bedform 
has emerged at a distance of approximately 1.9 non-dimensional units from the initial Gaussian 
ridge. Flow if from left to right. 
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