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UAV Trajectory Planning for Data Collection from
Time-Constrained IoT Devices

Moataz Samir, Sanaa Sharafeddine, Chadi Assi, Tri Nguyen and Ali Ghrayeb

Abstract—The global evolution of wireless technologies and
intelligent sensing devices are transforming the realization of
smart cities. Among the myriad of use cases, there is a need
to support applications whereby low-resource Internet of Things
(IoT) devices need to upload their sensor data to a remote
control centre by target hard deadlines; otherwise, the data
becomes outdated and loses its value, for example, in emergency
or industrial control scenarios. In addition, the IoT devices can
be either located in remote areas with limited wireless coverage
or in dense areas with relatively low quality of service. This
motivates the utilization of unmanned aerial vehicles (UAVs) to
offload traffic from existing wireless networks by collecting data
from time-constrained IoT devices with performance guarantees.
To this end, we jointly optimize the trajectory of a UAV and
the radio resource allocation to maximize the number of served
IoT devices, where each device has its own target data upload
deadline. The formulated optimization problem is shown to be
mixed integer non-convex and generally NP-hard. To solve it,
we first propose the high-complexity branch, reduce and bound
(BRB) algorithm to find the global optimal solution for relatively
small scale scenarios. Then, we develop an effective sub-optimal
algorithm based on successive convex approximation in order to
obtain results for larger network scenarios. Next, we propose an
extension algorithm to further minimize the UAV’s flight distance
for cases where the initial and final UAV locations are known
a priori. We demonstrate the favourable characteristics of the
proposed algorithms via extensive simulation results and analysis
as a function of various system parameters, with benchmarking
against two greedy algorithms based on distance and deadline
metrics.

Keywords—Keywords: Unmanned Aerial Vehicle (UAV); IoT
devices; Timely Data Collection; Branch and Reduce and Bound;
Resource Allocation.

I. INTRODUCTION
The vision of smart cities is currently being pursued by gov-

ernments and municipalities of major cities across the world;
this massively relies on information and communications tech-
nologies to gather information which is critical for the efficient
use of existing assets and resources. To deliver the grand
envisioned promises, there is a need to embrace a myriad of
network connected devices (wearables, smart home appliances,
embedded sensors, traffic and street lights, connected vehicles,
cameras, etc.) deployed in very large numbers, spanning var-
ious verticals (health, transportation, energy, industrial, etc.),
leaping us to the realm of the Internet of Everything (IoE).

M. Samir and C. Assi are with Concordia University, Montreal,
QC H3G 1M8, Canada (e-mail: moataz.shoukry@mail.concordia.ca;
assi@encs.concordia.ca). S. Sharafeddine is with Lebanese
American University Beirut, Beirut 1102 2801, Lebanon (e-mail:
sanaa.sharafeddine@lau.edu.lb). T. M. Nguyen is with the École de
Technologie Supérieure, Montreal, QC H3C 1K3, Canada, (e-mail: minh-
tri.nguyen.1@ens.etsmtl.ca). A. Ghrayeb is with Texas A&M University at
Qatar, Doha, Qatar (e-mail: ali.ghrayeb@qatar.tamu.edu). This work was
supported in part by the Concordia University and in part by FQRNT.

For example, multiple sensors, meters, and street lights may
be combined to improve infrastructure, services, and public
utilities in cities. Other example use cases include critical
applications such as disaster management, search and rescue
operations and border monitoring, where a large number of
Internet of Things (IoT) devices are distributed across different
geographical areas for detection and measurement purposes.

This rush to digitization has resulted in a significant growth
in internet connected things, whose number is projected to
reach 500 billion by 2025 [1], generating data at an exponential
rate and ever unprecedented. For example, it is reported that
modernizing the power grid will generate a 1000 petabytes of
data per year, much more data than what cellular operators
carry in their networks per year [2]. Many industries are
currently running pilot projects for self-driving cars, such as
Waymo, a recent initiative by Walmart, Uber’s self-driving
taxis and trucks, Drive-Me by Volvo, among many others and
it is reported that an autonomous vehicle will generate data at a
rate of 1GB/sec [3]. Cities are also tapping into this technology
to improve the efficiency of various citizen-oriented services,
e.g., through the deployment of a large-scale system of sensors
to better manage traffic, monitor congestion, and optimize the
use of traffic and street lights.

Owing to the IoT devices’ massive integration into the
ICT ecosystem and the sheer volume of data they generate,
their heterogeneous requirements in terms of quality of service
(latency, reliability, higher rates, security, etc.) required by var-
ious verticals, combined with often their limited capabilities,
current cellular systems may not be suited for their operation.
Hence, major rethinking to the way current networks operate is
underway [4] to accommodate the hyper connectivity expected
in the realm of IoTs. While many emerging technologies (e.g.,
mmWave, small cells, ultra densification, novel radio access
(NOMA), etc.) are contemplated for networks of the future,
each technology may have its own drawbacks [4]. Being agile,
flexible and mobile, unmanned aerial vehicles (UAVs) have
recently received much attention and been explored among the
enabling and supporting technologies for 5G wireless systems
and beyond. Indeed, UAVs can play a central role in the con-
text of smart cities with dense deployment of sensors; UAVs
can be used as a gathering entity of the collected information
from various IoT devices with for instance limited communi-
cation capabilities. UAVs can also provide a computing hub
at the edge to run several data analytics on the collected
data, therefore achieving the low latency required by several
critical IoT applications. Owing to their mobility, UAVs can
flexibly move to enable a line of sight (LoS) communication
or come in close proximity to the ground devices, therefore,
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achieving higher throughput rates and conserving the energy
of less capable devices. In summary, the benefits UAVs bring
to current networks are enormous, and as such, they are
considered among the contending enabling technologies for
building networks of the future.

In line with the discussion above, this paper considers a
data collection problem where a deployable UAV (for instance
in the context of offloading) can be dispatched to gather
data collected by IoT devices in a smart city environment.
In particular, timely data collection becomes very critical in
scenarios that involve IoT devices with limited buffer sizes
deployed for instance for continuous measurements, and thus
data has to be extracted before it loses its value or being
overwritten by newly incoming data. Other scenarios include
situations (such as in emergency rescue operations, disaster
monitoring and target tracking) where the accumulated data
reveals current conditions of the respective field for alert
and notification services and thus enjoys a restricted lifetime
beyond which it loses its significance. For instance, during a
natural disaster, specific vital data needs to be collected in time
for systematic evaluations of the current situation in a given
area. The timeliness of the transmitted data for these scenarios
is essential, since outdated data may have no useful value.
A. Related Work
The existing literature has addressed various challenges in

UAV communication systems. The UAV channel model in
terms of channel characteristic of air-to-ground (A2G) is
studied in various environments [5] [6] [7]. The most widely
A2G model is proposed in [8]; we refer the interested reader
to [9] where different propagation models are investigated
based on channel measurements. In the context of energy
efficiency, significant work has been devoted to minimize the
UAV energy consumption, such as [10], or sensor network
energy to prolong the network lifetime such as [11]. Other
works have focused on the optimal deployment/placement of
UAVs to maximize the coverage probability and capacity [12].
Furthermore, researchers tried to minimize the total aviation
or flight time while guaranteeing the UAV mission objective
as discussed in [13].

Optimizing the trajectory of the UAV is another important
research challenge. In particular, optimizing the trajectory of
the UAV depends on many factors. For instance, the work
in [14], maximized the minimum rate among ground users
by optimizing the trajectory and user scheduling for a single-
UAV. In [15], the authors characterized the capacity region
of a UAV-enabled two-user broadcast channel by optimizing
the UAV trajectory jointly with transmit power or rate. The
authors showed that for a sufficiently long flight duration, the
optimal UAV trajectory with different multiple access schemes
will achieve almost the same capacity. In [16], the authors
characterized the capacity region of a UAV for multiple
users by jointly optimizing the UAV trajectory and radio
resource allocation for multiple access techniques. The authors
showed that the capacity region achieved for multiple users by
non-orthogonal multiple access significantly outperforms the
rate regions by orthogonal multiple access, while frequency
division multiple access achieves higher rate region than that
by time-division multiple access. The work in [17] jointly

optimized the trajectory, multi-user scheduling and power
control for multiple UAVs to maximize the minimum rate
of ground users. In [18], the authors optimized the UAV’s
trajectory to minimize the time to completely disseminate
a common file to a number of distributed ground terminals
(GTs). In [19], the UAV trajectory, bandwidth resources, and
user partitioning between a ground base station and UAV
are optimized to maximize the minimum quality of service
(QoS) for ground users located at the cell edge. In [20],
UAV trajectory and ground terminal transmit power are jointly
optimized for both circular and straight trajectories to reveal
a fundamental trade-off between the UAV propulsion energy
consumption and ground terminal communication energy con-
sumption. In [21], the authors maximized the throughput by
optimizing the UAV trajectory jointly with the transmitted
power for a mobile relay node mounted on a UAV, subject
to the UAV mobility constraints. In [22], the UAV placement,
radio resource allocation, and decoding order of the non-
orthogonal multiple access transmission scheme are optimized
to maximize the sum achievable rate of all users. In [23], the
authors applied SCA and the Lagrange duality to maximize the
minimum average rate for both delay-constrained and delay-
tolerant services by optimizing the trajectory of UAV and
spectrum allocation.

On the other hand, data collection using UAVs has been ad-
dressed in several prior work. For example, the authors in [24]
proposed a data collection framework for UAV-assisted wire-
less system to maximize the system throughput. To increase
the efficiency of data collection and increase the sensors’
lifetime, the authors proposed a priority access and routing
algorithm framework upon dividing the sensors into multiple
groups, each associated with a certain priority. The authors
of [11] optimized the UAV’s trajectory and sensors’ wake-
up schedule to minimize the maximum energy consumption
of all sensors to increase the network lifetime. The authors
applied successive convex approximation, SCA method, to
solve the optimization problem sub-optimally. Multiple UAVs
are also considered in the same work while considering a
fading channel. In [25], the authors deployed multiple UAVs
for collecting data from ground IoT devices, where the total
uplink transmit power of these IoT devices is minimized in
a time-varying network by optimizing the UAV’s trajectory
and IoT power control. In [26], the authors proposed a greedy
algorithm to optimize the trajectory of the UAV to minimize
the mean square error (MSE) for estimation parameters by
sensor nodes. In [27], the authors proposed a solution for
energy-efficient data collection by optimizing the trajectory
of UAV jointly with optimized the selection of cluster head
along with establishing forwarding trees between sensor-nodes
and cluster head.

Recently, few works have been conducted to address the
time-sensitive data collection. The authors in [28] proposed
two UAV trajectory to minimize the maximum and average
age-of-information. The authors adapt a dynamic program-
ming (DP) method and genetic algorithm (GA) to obtain the
UAV trajectory. The authors in [29], optimized the UAV trajec-
tory, service time allocation and the UAV energy to minimize
the average peak age-of-information between a source and
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Fig. 1: System model: timely data collection in a smart city
environment using UAV. For illustration, an example of the time line
representation for two IoT devices with two deadlines. With respect
to the time line, we have the first IoT device with the data generation
of second time slot, τ1 = 2, with the deadline of eighth time slot,
δ1 = 8, while the second IoT device with the data generation of third
time slot, τ2 = 3, and the deadline of seventh time slot, δ1 = 7.

destination, where an iterative algorithm is proposed to solve
the optimization problem. In this work, we are interested in
further exploring the impact of the deadlines on the trajectory
of UAV and the allocation of radio resources. Specifically, we
aim to jointly optimize the trajectory of a UAV and the radio
resource allocation when imposing a deadline on data packets
that need to be collected before expiry.
B. Our Contributions

Compared to the surveyed related work, here we address
the problem of timely data collection from IoT devices where
the collected data has deadlines and needs to be collected
before the data loses its meaning or becomes irrelevant.
Moreover, we adopt a Rician channel model, which encom-
passes a wider range of channel models, and hence makes
the proposed solution more realistic. Our objective is to find
the most suitable trajectory for a UAV to collect data from
the maximum possible number of devices while ensuring a
minimum amount of data uploaded per device. This turns out
to be a challenging problem, which we model mathematically
as a non-convex optimization problem. We develop an optimal
solution following a well designed branch, reduce and bound
(BRB) algorithm. However, given its complexity and lack of
scalability, we develop a low complexity method (based on
SCA method) where we first find a trajectory that maximizes
the number of served devices. Then, the UAV is deployed
along the designed trajectory and at each time slot collects
accurate channel state information (CSI) knowledge to allocate
radio resources to serve the IoT devices. Next, we elaborate
a method that further optimizes the trajectory (i.e., find the
shortest) for serving the same number of IoT devices within
their information deadlines. Finally, we compare our results
with two greedy methods as benchmarks based on distance
and deadline metrics.

The rest of this paper is organized as follows. Section
II presents the system model followed by the problem for-
mulation in section III. We propose an optimal solution for
data collection from time-constrained IoT devices in Section
IV. A sub-optimal solution along with enhanced algorithm
are proposed in section V. Section VI proposes enhanced

algorithm for minimizing UAV flight distance. Simulation
results are presented in section VII. Finally, conclusions are
drawn in section VIII, and future research directions are
highlighted.

II. SYSTEM MODEL

We consider a smart city environment comprising a set M
of M IoT devices with limited capabilities distributed over
a given area and continuously collecting time-sensitive data.
This data is assumed to carry useful information as long as
it is uploaded within a given target deadline, beyond which
it loses its significance and becomes irrelevant. The system
model is depicted in Fig. 1, where a UAV is dispatched on
a regular basis to serve as many IoT devices as possible by
completely collecting information from each device i before
its expiry deadline δi. The locations of the IoT devices together
with their corresponding data sizes, the data generation time,
τi, and target deadlines are assumed to be known by the UAV,
through a central controller, prior to the launch of the UAV for
every data collection mission. The mission duration, referred
to as flight time, is fixed to T and divided into N equal time
slots, indexed by n = 1, ..., N , each of length δt. Technically,
δt is sufficiently small such that we can assume the location
change of the UAV within δt is negligible, compared to the
distances from all IoT devices to the UAV.

The UAV is assumed to fly at a fixed altitude H in meters
above ground level, e.g., that is imposed by the regulatory
authority for safety considerations; the UAV’s location in time
slot n is given by (xn, yn, H). Orthogonal transmission
is employed in the uplink to allow multiple IoT devices
to simultaneously upload their data to the UAV. Given the
location (xi, yi, 0) of each IoT device i ∈M at ground level
and the current UAV location (xn, yn, H) in time slot n, the
distance dni between the UAV and the IoT device is calculated
as follows:

dni =
√

(xi − xn)2 + (yi − yn)2 +H2, n = 1, 2, ...N, (1)

In practice, the speed of a UAV is limited to a maximum value
vmax in m/s and, thus, its travel distance in one time slot is
constrained as follows:

(xn+1 − xn)2 + (yn+1 − yn)2 ≤ (vmaxδt)
2, n = 1, ..., N−1, (2)

We also assume the channel between the IoT devices and
the UAV follows a Rician fading channel model with a factor
K, where the channel coefficient hni can be written as

hni = ĥni ∆n
i (3)

where ĥni and ∆n
i respectively represent the small-scale fading

and path-loss coefficients. In particular, we can write the path-
loss coefficient as ∆n

i = γ0(dni )−α, where γ0 is the average
channel power gain at a reference distance d0 = 1m, α is the
path-loss exponent that usually has a value greater than 2 for
Rician fading channel. The small scale fading ĥni is composed
of line-of-sight (LoS) component h

n

i , where |hni | = 1, and a
random Non-line-of-sight (NLoS) component h̃ni , where h̃ni ∼
CN (0, 1). The small scale fading ĥni is given by

ĥni =
(√ K

K + 1
h
n
i +

√
1

K + 1
h̃ni

)
, (4)
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Each IoT device i is assumed to transmit with constant
power P leading to a received power at the UAV Pni = |hni |2P
in time slot n. The signal-to-noise ratio (SNR) of each IoT
device is Υi,n = P |ĥni |2∆n

i /σ
2, where σ2 is the thermal

noise power which is linearly proportional to the allocated
bandwidth [30]. Thus, the instantaneous achievable rate for
each IoT device i in time slot n is given by

rni (bni , x
n, yn) = bni log2(1 + Υi,n), (5)

where bni is the fraction of spectrum allocated to IoT device
i in time slot n and it is equivalent to a number of resource
blocks. In practice, for large numbers of resources, bni is ap-
proximately continuous between 0 and 1. Thus, the allocation
of the radio resources should meet the below constraints∑

i∈M
bni ≤ 1, ∀n. (6)

0 ≤ bni ≤ 1,∀n, i ∈M. (7)

We should note that our model assumes a frequency non
selective, or flat, channel which, unlike frequency selective
channel, only the fraction of radio spectrum allocated to each
IoT device is of interest, rather than which fraction of the
radio spectrum. Hence, our allocation constraint decides on
the amount of resource blocks that need to be allocated to
achieve the service amount for each served device. We
define the service amount as the amount of data that one
IoT device delivers to the UAV within a given deadline
during a data collection mission. The service amount concept
has been proposed in multiple previous works especially in
scenarios with mobility [31] [32] [33], where the instantaneous
achievable rate is time-variant and does not exhibit the service
quality of the corresponding transmitting device. Similarly, in
our system model, the instantaneous achievable rate of one
IoT device is not only based on the device itself but varies
according to the data deadlines of the other IoT devices to be
served. Consequently, we utilize the service amount concept to
represent the service quality of each IoT device. The service
amount Si(bni , x

n, yn) provided by each IoT device i over
flight time T can be computed based on the summation of
the instantaneous achievable rates throughout the information
lifetime, where the rate of a given device is set to 0 as soon
as its data deadline passes. The service amount Si(bni , x

n, yn),
computed in bits/Hz, can be written as

Si(b
n
i , x

n, yn) = δt

N∑
n=1

sni ,∀i ∈M, (8)

where

sni =

{
rni (bni , x

n, yn), if τi ≤ n ≤ δi
0, otherwise

(9)

III. PROBLEM FORMULATION

The objective of this work is to optimize the UAV trajectory
and allocation of resources to maximize the total number of
served IoT devices within a flight mission duration T based on
a given set of target time constraints. To serve device i, its data
Si should be completely collected by the UAV throughout the
lifetime. To mathematically formulate the problem, we define

a binary variable κi ∈ {0, 1}, ∀i ∈ M, that is asserted if the
UAV can successfully serve device i with a minimum service
amount Smini ; otherwise, it is set to 0, where Smini is defined
as the minimum amount of information (bits/Hz) that need
to be uploaded by device i. Let us denote X = {xn,∀n},
Y = {yn,∀n}, K = {ki, i ∈ M} and B = {bni ,∈ M, n}.
The formulated optimization problem is given in (10) with
the objective to maximize the number of served IoT devices.

(P1) : max
X,Y,B,K

∑
i∈M

κi (10a)

s.t. Si(bni , x
n, yn) ≥ κiSmini ,∀n, i ∈M, (10b)

κi ∈ {0, 1}, i ∈M, (10c)
0 ≤ bni ≤ κi,∀n, i ∈M, (10d)
(2), (6), (10e)

[x0 y0] = [xs ys], (10f)

[xN yN ] = [xe ye], (10g)

Constraint (10b) guarantees that each served IoT device
uploads the minimum amount of data Smini . Constraint (10d)
prevents the UAV from wasting radio resources on IoT devices
that cannot be served within their deadline. As a result, the
share resources bni in (7) is upper bounded by κi that is
set to 0 if device i is not selected to be served. Constraints
(10f) and (10g) indicate the initial position of the UAV’s
trajectory located at [xs ys] and the final position at [xe ye].
In fact, the operator may decide on those positions based on
multiple factors such as the location of their managed property,
legislation and/or UAV’s charging stations.

Clearly, the solution of P1, which yields a trajectory for
the UAV during a time frame T , relies on the knowledge of
the instantaneous channel at each time slot during the flight.
Given that by the time a trajectory is designed, there is no
possible way of obtaining the channel conditions in future
slots; hence, we overcome this obstacle by assuming a path
loss model for the channel and solve P1 to obtain a trajectory
which maximizes the number of IoT devices which can be
served. Then, we utilize the obtained trajectory to fly the
UAV; but, at each time slot during its flight, the UAV obtains
correct instantaneous CSI, and then assigns resources for the
IoT devices to meet their service rate, at that slot. The process
is repeated throughout the trajectory of the UAV. More details
will be presented in the sequel.

We also observe that P1 is a mixed integer non-linear
program (MINLP), which is generally NP-hard, due to the
existence of the binary variable κi in (10c) and non-convex
constraint (10b) [17], even if the binary variable κi is relaxed
to take any value between 0 and 1. The relaxed version of P1

is, nevertheless, non-convex due to the trajectory variables xn

and yn in (10b). To the best of our knowledge, there is no
solver for P1.

IV. GLOBAL OPTIMIZATION SOLUTION

In this section, we present a solution to optimally solve
the problem P1 using a customized branch, reduce and
bound (BRB) algorithm [34]. Although the optimization prob-
lem is monotonically increasing with respect to κi, it is yet
hard to be solved by the BRB algorithm due to the non-
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convex constraint in (10b), with respect to their variables. In
what follows, we transform P1 into another equivalent and
monotonically increasing optimization form, based on which
a BRB algorithm is customized to solve our optimization
problem optimally.
A. Equivalent Formulation
Consider the following optimization problem:

P1O : max
X,Y,B,U

∑
i∈M

1

[
max

{
δt

δi∑
n=τi

bni u
n
i − Smini , 0

}]
(11a)

s.t. uni ≤ log2

(
1 + Υi,n(xn, yn)

)
, ∀i ∈M, n = τi, ..., δi,

(11b)
(2), (6), (7), (10f), (10g) (11c)

where 1[x] is the indicator function that equals unity if x > 0,
and zero otherwise. To propose the optimal solution for our
optimization, we propose the following lemma
Lemma 1: By introducing the slack variable U = {uni ≥
0,∀n}, P1 is equivalent to the monotonic formulation P1O,
i.e., P1 and P1O have the same objective and solution set.
Proof: The proof is in Appendix A.
B. Proposed BRB Solution
It can be seen that, when the variables bni and uni , i ∈M,∀δi

are fixed, our optimization problem P1O becomes a feasibility
checking for a convex monotonic optimization problem [35].
Consequently, the BRB method can be applied to optimally
solve the problem. In the BRB algorithm, a set of N non-
overlapping hyper-rectangles that cover the optimization prob-
lem in (11a) is maintained, where one of the hyper-rectangles
includes the optimal solution.

We define the hyper-rectangle A = [A, Ā] that contains all
feasible solutions for our optimization problem, where A and
Ā are the lower bound and the upper bound vector that hold
the lowest and the highest values for the variables uni and
bni , respectively. In fact uni is bounded 0 ≤ uni ≤ log2(1 +
Υmax
i,n ), i ∈ M, ∀δi, where Υmax

i,n is the maximum signal-to-
noise ratio when the UAV is hovering right above the IoT

device i at time slot n and is computed as Υmax
i,n =

Pγ0|ĥni |2

σ2H2
.

In principle, three operations are conducted for each iter-
ation in the BRB method to improve the lower and upper
bounds; namely, Branching, Reduction and Bounding. First,
the branching operation is applied to divide the selected hyper-
rectangle A that contains the largest upper bound into two
equal smaller hyper-rectangles using one of the partition meth-
ods (such as bisection method), and checks the feasibility of
each hyper-rectangle through one of the optimization solvers
(such as SDPT3) can solve it. Second, the reduction operation
is applied to the hyper-rectangles to remove the parts that
cannot satisfy the feasible solution to find a smaller hyper-
rectangle. Third, a bounding operation is performed to search
for the optimal solution by updating the upper and lower
bounds. The algorithm proceeds until the difference between
the lower and upper bounds is smaller than a predefined
accuracy εo. These operations are illustrated in more details in
[34]. Algorithm 1, referred to as BRB-optimal, summarizes the
BRB solution of (11) to determine the optimal UAV trajectory

Algorithm 1 BRB-Optimal: Proposed to Optimally Solve the Data
Collection Problem.

1: Inputs: The hyper-rectangle A, the error tolerance εo, the
minimum service amount Smini and the deadline δi.

2: Initialization:
3: Apply the reduction procedure to our initial hyper-rectangle A

to obtain the new reduction hyper-rectangle red(A).
4: Update the hyper-rectangle box B1 = red(A) and set iteration

number m = 1.
5: Branch B1 into two smaller hyper-rectangle boxes B(j)

1 ,∀j =
1 : 2.

6: Update the set of hyper-rectangles boxes D1={B(j)
1 } and the

lower bound ψm = LB(B1).
7: while

(
max

B
(j)
m ∈Dm

(
UB(B

(j)
m )
)
− ψm ≥ εo

)
do

8: Select the hyper-rectangle box that has the maximum upper
bound Bm = arg max{UB(B

(j)
m )|Bm ∈ Dm)} for branching.

9: Branch Bm into two smaller hyper-rectangles B
(1)
m , B(2)

m

using bisection method along with the longest edge of Bm. .
//Branching operation//.

10: Compute the lower bound for both hyper-rectangles and apply
the reduction procedure to the feasible hyper-rectangles to obtain
red(B(1)

m ) and red(B(2)
m ). . //Reduction operation//

11: Compute the maximum lower bound for both reduced hyper-
rectangles red(B(1)

m ) and red(B(2)
m ). . //Bounding

operation//.
12: Update ψm+1 = max(LB(red(B

(1)
m )), LB(red(B

(2)
m )), ψm).

13: Remove the hyper-rectangle box that do not contain
the optimal solution and update the set of hyper-rectangles
boxes Dm+1 = Dm\{Bi|ψm+1 > UB(red(Bi))}, ∀i =
1, ...cardinal(Dm).

14: m = m+ 1.
15: end while
16: Output The global optimal solution for maximizing the number

of served IoT devices.

that allows the maximum number of IoT devices to be served.

C. Convergence Analysis

Algorithm 1 is guaranteed to compute the global optimal
solution for maximizing the number of served IoT devices for
P1 and its convergence can be proved based on [34], which can
be explained as follows. The BRB operations iteratively update
and improve the lower and upper bounds of the objective
equation(11a). Specifically, in each iteration the lower bound
is non-decreasing by updating the step 10, while the upper
bound is non-increasing by reduction and bound operations.
Due to the monotonic property, after a number of iterations,
the gap between the upper and lower bounds of the box
that contains an optimal solution is less than or equal to a
predefined accuracy level εo.

V. LOW-COMPLEXITY SUBOPTIMAL SOLUTION

Since our trajectory optimization is time-sensitive as it de-
pends on the deadlines of the data, the BRB method does not
lend itself as an efficient approach and requires a long time
to achieve optimal solution especially with a large number
of IoT devices. In general, The BRB method is used to
generate optimal solutions for relatively small-scale scenarios
and also serves as a benchmark for other approaches (as
will be shown in our numerical evaluation in the sequel).
Motivated by this, we aim to solve the problem for practical
network scenarios with a larger number of IoT devices, a low-
complexity algorithm is presented to maximize the number of
served IoT devices in the next section.
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A. SCA-Algorithm for Maximizing the Number of Served IoT
Devices

In this section, we attempt to solve P1 based on convex
approximation methods and multiple equivalent transforma-
tions to generate a more efficient but sub-optimal solution. To
solve our optimization, the non-convex constraint in (10b) is
approximated into another equivalent convex equation form
and SCA method is applied to solve it iteratively.

As mentioned earlier, P1 is integer non-convex program
and difficult to solve. Here, the main difficulty of solving
P1 is to deal with the binary variable κi which appears in
the objective function of (P1). Moreover, even if we relax
the binary variable κi to make it continuous between ’0’ and
’1’, the relaxed version of P1 is still non-convex. The non-
convexity of P1 is due to the existence of the non-convex non-
concave service amount Si a function of the UAV’s trajectory,
which appears in the constraint (10b). To tackle the problem,
we introduce slack variables G = {gni ≥ 0,∀n, i ∈ M} and
C = {cni ≥ 0,∀n, i ∈ M}. Then, we relax the binary
variable κi in equation (10c) between 0 and 1. Next, we
employ an approximate to function log2(1 + Υi,n) by convex
approximation with respect to (xni − xn)2 + (yni − yn)2 [36],
where at the rth iteration, the following inequality can be
obtained,

log2(1 + Υi,n) ≥ −Ar,ni
(

(xi−xn)2 + (yi − yn)2 − (xi − xr,n)2

−(yi − yr,n)2
)

+Br,ni ,

, ζn,ri (xn, yn),
(12)

where

Ar,ni =
α(Pγ0|ĥni |2/σ2) log2 e

2
(
(H2 + (xi − xr,n)2 + (yi − yr,n)2)α/2 + (Pγ0|ĥni |2/σ2)

)
.

1(
H2 + (xi − xr,n)2 + (yi − yr,n)2

) , ∀n, i ∈M,

(13)

Br,ni = log2

(
1 +

Pγ0|ĥni |2

σ2
(
H2 + (xi − xr,n)2 + (yi − yr,n)2

)α/2
)

,∀n, i ∈M,
(14)

To this end, we can reformulate P1 as:

P1L : max
X,Y,B,
K,G,C

∑
i∈M

κi (15a)

s.t. δt
δi∑

n=τi

cni ≥ κiSmini , i ∈M, (15b)

cni ≤ bni gni , i ∈M, n = τi, ..., δi, (15c)
gni ≤ ζn,ri (xn, yn), i ∈M, n = τi, ..., δi, (15d)
0 ≤ κi ≤ 1, i ∈M, (15e)
0 ≤ bni ≤ κi, ∀n, i ∈M, (15f)
(2), (6), (10f), (10g), (15g)

Examining constraint (15c), the non-convexity factor bni g
n
i

is on the greater side of the inequality. To deal with this
constraint, we simply replace the right side of (15c) by
an equivalent Difference of Convex (DC) function bni g

n
i =

(bni + gni )2 − (bni − gni )2

4
, and linearize the concave term

(bni + gni )2

4
of the constraint at iteration r. Hence, the con-

straint (15c) is approximated as

− (br,ni + gr,ni )2

4
− (br,ni − g

r,n
i )(bni − br,ni + gni − gr,ni )

2

+
(bni − gni )2

4
+ cni ≤ 0

(16)

Using the above approximation, P1L transforms into a
convex problem, and can be optimally solved by updating
parameter ζn,ri (xn, yn) iteratively. Algorithm 2, summarizes
the SCA-based sub-optimal solution to find the maximum
number of served IoT devices during a data collection mission.
The solution of P1 results in a trajectory that maximizes the
number of served IoT devices during the flight time period.
Now, P1 assumes a path loss model (no fading) for the chan-
nel; to deal with the unknown CSI, we present the following
approach. The UAV uses the obtained designed trajectory, and
during its deployment it obtains accurate knowledge of the
CSI at each time slot and attempts to serve the devices within
its coverage along its trajectory. Namely, using the solution of
P1L with path loss model, let M′n be the set of IoT devices
served by the UAV at time slot n and let sni,pl be the service
rate each IoT device i received at time slot n using P1L. Now,
during the operation phase of the UAV, we would ideally like
each IoT i ∈ M′n to receive at least a rate equals sni,pl, ∀n.
However, given that the channel has a fading component now,
it is likely that some devices may not receive their required
rate at some time slot. LetM′′n ⊆M′n be the set of devices
that, at each slot n, are unable to receive a rate sni ≥ sni,pl.
Then, at each slot n, we solve a problem of resource allocation
to maximize the number of served IoT devices as follows:

(PE) : max
B,K

∑
i∈M′

n

κi (17a)

s.t. δtsni (bni ) ≥ κi(sni,pl + βiΘ
n−1
i − λn−1i ),∀i ∈M′n,

(17b)
0 ≤ κi ≤ 1, i ∈M′n, (17c)∑
i∈M′

n

bni ≤ 1. (17d)

0 ≤ bni ≤ 1,∀n, i ∈M′n, (17e)

where βi is a binary value that takes a value of 1 if data of IoT
i is within its deadline and 0 otherwise. If M′′ = ∅, then all
IoT devices at slot n would receive their minimum service rate.
On the one hand, if at least one device i obtains sni < sni,pl,
then we compute the service amount deficit (Θn

i = sni,pl− sni )
for this device and attempt to allocate a surplus service amount
in subsequent time slots. On the other hand, for admitted IoT
device i (i.e. sni > sni,pl), we compute the service rate surplus
(λni = sni − sni,pl) for this device and subtract it from future
slots. Indeed, to compensate, the UAV needs in subsequent
time slots to allocate more radio resources for IoT device in
deficit to meet their service amount target. It is obvious that
PE is a convex problem and several optimization solvers can
solve it optimally. It is also clear that the UAV will exploit its
knowledge of accurate CSI at each slot to resolve PE .

6



1536-1276 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2019.2940447, IEEE
Transactions on Wireless Communications

Algorithm 2 Sub-optimal: Proposed SCA for Solving P1L and
P2L.

1: Inputs: The error tolerance ε, the minimum service amount
Smini , and the deadlines δi.

2: Initialization:
3: Set the initial trajectory xr,n yr,n, ∀n the resource allocation
br,ni , ∀n, ∀i and iteration number r = 1.

4: while (Obj (r − 1) − Obj (r)) ≥ ε do
5: For SCA-algorithm problem P1L: solve the convex problem

(15) to obtain the trajectory xr+1,n yr+1,n, ∀n and br+1,n
i , ∀n,

∀i ∈M.
6: For SCA-distance problem P2L: solve the convex problem

(20) with the updated subsetM′ devices to obtain the trajectory
xr+1,n yr+1,n, ∀n and br+1,n

i , ∀n, ∀i ∈M′.,
7: Update the UAV’s trajectory xr,n yr,n, ∀n,
8: Update the resource allocation br,ni , ∀i,
9: Update r = r + 1.

10: end while
11: Output:
12: For SCA-algorithm problem P1L, the output is the sub-optimal

solution for maximizing the number of served IoT devices M′
13: For SCA-distance problem P2L, the output is the sub-optimal

solution for minimizing the flight distance.

B. Complexity Analysis
In this section, the complexity analysis is discussed. For

the optimal algorithm based on the BRB method, which is
Algorithm 1, the BRB algorithm requires an extremely long
time to achieve the optimal solution especially with a large
number of IoT devices. This is due to the fact that BRB is
an exhaustive search approach and depends on the problem
size, i,e., the number of IoT devices, the service amount
and the allocated resources. Furthermore, at each iteration,
a feasibility optimization problem is solved. For the SCA-
algorithm, the overall complexity of P1L depends on the
solver that is employed to solve P1L. In particular, P1L is
a convex problem and, thus, several interior-point solvers can
be employed to solve it. Therefore, we employ the number
of Newton steps, denoted by Cs, as a metric to measure its
complexity. In fact, the Newton steps depends on the problem
size and the number of recursive iterations till convergence
from a given initial point. Based on [37] [38], the worst-case
Cs to reach a local solution in P1L can be expressed as:

Cs ∼
√

problem size (18)

where the problem size is the total number of variables of
the optimization problem. First we remark that, in the worst
case, P1L must iteratively solve and update the variables.
Precisely, there are 3MN + 2N + M variables in P1L.
Thus, in each iteration, the complexity of solving P1L is
approximately

√
3MN + 2N +M , which induces an overall

complexity of I
√

3MN + 2N +M in the worst-case, where
I is a finite number of iterations that depends on the value of
error tolerance ε.

VI. SCA-DISTANCE FOR MINIMIZING UAV FLIGHT
DISTANCE

In practice, it is essential to minimize the UAV flight distance
while satisfying all other problem constraints. Two operation
modes are typically considered for the UAV [39]: hovering
mode in which the UAV hangs in one spot to collect data
from IoT devices and forward flight mode in which the UAV
moves from one location to another. Short flight distance infers

an efficient trajectory that saves time and forward flight energy
(propulsion). As a matter of fact, solving P1 allows the UAV
to go back and forth to concurrently collect data from distant
IoT devices. Doing so incurs additional propulsion energy
consumption that can be saved by minimizing the UAV flight
distance. In attempt to conserve propulsion energy, we use
the output generated by the solution of P1 that includes the
maximum number of IoT devices M′ that may be served by
one UAV while meeting their data deadlines, and minimize
the distance traveled by the UAV to satisfy the same number
of devices with optimized radio resource allocation. Given
the initial and the final locations of the UAV trajectory,
we formulate the optimization problem with the objective to
minimize the flight distance as the below:

P2 : min
X,Y,B

N−1∑
n=0

d
(

(xn+1, yn+1), (xn, yn)
)
, (19a)

s.t. Si(bni , x
n, yn) ≥ Smini , i ∈M′, n, (19b)

0 ≤ bni ≤ 1,∀n, i ∈M′, (19c)
(2), (6), (10f), (10g). (19d)

where d(., .) is the distance between two way-points. The
characteristics of P2 deserve more elaboration. In P1, we
aim at maximizing the number of served IoT devices. This
means that in some scenario, the UAV wastes time and energy
while serving the maximum number of served IoT devices. On
the contrary, P2 guarantees that the UAV must minimize the
traveling distance when the maximum number of IoT devices
is achieved.

This problem is essentially equivalent to a well-known
problem called Traveling Salesman Problem (TSP), which
is known to be NP-hard. One straightforward approach for
solving P2 is to find the nearest device (known as the greedy
or nearest neighbor algorithm) under deadline constraint. How-
ever, serving devices once at a time is an inefficient approach.
Therefore, we propose an efficient suboptimal solution to P2
based on SCA algorithm. Similar to P1, P2 is non-convex
problem because the non-concave non-convex function Si
in constraint (19b). By introducing convex approximation in
(15d) and the slack variables W = wni ≥ 0,∀n, i ∈ M′
and Z = Zni ≥ 0,∀n, i ∈ M′, P2 can be solved by
iteratively solving the following approximated convex problem
formulated at the r + 1 iteration index as

P2L : min
X,Y,B,

W,Z

N−1∑
n=0

d
(

(xn+1, yn+1), (xn, yn)
)
, (20a)

s.t. δt
δi∑

n=τi

zni ≥ Smini , i ∈M′, (20b)

zni ≤ bni wni , i ∈M′, n = τi, ..., δi, (20c)
wni ≤ ζ

n,r
i (xn, yn), i ∈M′, n = τi, ..., δi,

(20d)
0 ≤ bni ≤ 1,∀n, i ∈M′, (20e)
(2), (6), (10f), (10g). (20f)
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Algorithm 2, presents SCA-Distance to sub-optimally mini-
mize flight distance and determine resource allocation among
served IoT devices.

VII. SIMULATION AND NUMERICAL ANALYSIS
In this section, we evaluate the performance of the proposed

algorithms numerically. The main input parameters that are
used in this simulation are listed in Table I. We assume a
geographical area of size 0.8 × 0.8km2 in which 1UAV is
dispatched to collect data from IoT devices. We assume that
the required minimum service amount for all IoT devices
is identical, and all IoT devices can communicate with the
UAV within the given area. The data generation, deadlines and
locations of the IoT devices are generated based on a normal
distribution, these deadlines and locations’ samples are then
used to identify the UAV trajectory and maximize the number
of served IoT devices. For sake of illustration, we assume
the flight duration in the simulations is sampled every 1secs,
unless mentioned otherwise. We also compare our methods
with two greedy ones, whose details are presented in Appendix
B.
A. Optimal Solution:
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Fig. 2: BRB-optimal algorithm to maximize the number of
served IoT devices.

We start by first studying the performance of our designed
BRB. To show its convergence towrds the optimal solution,
we consider a small scenario with a 3 IoT devices and a short
flying duration (N = 15 time slots sampled every 5secs). As
shown in Fig. 2, BRB requires a high number of iterations to
converge, and the optimal solution falls between the upper and
lower bounds. BRB spends a large amount of time to close
the gap between the upper and lower bounds. This clearly
demonstrates that when considering a larger number of IoT
devices, the BRB method will take much more time to find
the optimal amount of service for all devices, which may not
be an effective and practical solution to meet the IoT deadlines.
Here, the maximum number of served IoT devices is computed

by

⌊∑
∀i∈M Si

Smini

⌋
, where b.c denote the floor function.

B. Sub-Optimal Proposed Solution:
The CVX toolbox and numerical convex optimization

solver SDPT3 are used to solve our optimization sub-
optimally. We set the UAV’s initial and final locations at
[0 400] and [800 400], respectively.

TABLE I: Simulation Parameters
Parameter Value

IoT device transmission power, P 0.1mW
UAV altitude, H 100m

Channel power gain, γ0 -50 dB
Noise power, σ2 -110dBm

UAV max speed, vmax 50m/s
Pathloss exponent, α 2.7
The error tolerance ε 10−3

We start by solving P1L where we assume a path loss model
for the air to ground (A2G) channel. Fig. 3a, depicts the UAV
trajectory for collecting data from IoT devices (for a network
of 15 devices) over a period N = 90 time slots and a minimum
requirement Smini = 25 bits/Hz . The values of the deadlines
(in time slots) are depicted next to each IoT device in the
Fig. 3; the maximum deadline is equal to 90 time slots. We
observe that the total number of served IoT devices, through
this trajectory, within this time period is equal to "12", i.e.,
80% of the total number of devices. To see the impact of
the A2G channel on the performance, we next assume that
at the time of trajectory design, the operator gained accurate
knowledge of the CSI for all subsequent time slots (somehow
unrealistic, but serve the purpose of the study). We assume a
realistic Rician channel model with K = 3; Fig. 3b shows the
trajectory the UAV will take to serve the maximum number
of IoT devices. Clearly, the trajectory is different from that of
Fig. 3a; here, the UAV flies closer to each device in order to
compensate for the fading on the channel and serve the device
with the required service amount. This explains the difference
in the obtained trajectory, however, we notice as well that the
UAV serves exactly the same IoT devices as in the simple A2G
channel. This shows minor effect on the number of served
devices.

To better understand the impact of the channel, we next
take the trajectory obtained with the path loss model, and fly
the UAV on that trajectory, but this time at each slot, use a
Rician channel and vary the value of K. The reason for doing
this is to assess the impact of the channel as we operate the
UAV. We look at each of the 12 IoT devices and measure their
achieved service amount. Here the service amount is computed
by replacing the channel in Equation 8, using the values for
b, x, and y after solving P1L. The results are depicted in
Fig. 4a. We observe that for smaller values of K, not all
IoT devices (of the 12) would receive the minimum required
service amount (e.g., devices 4, 7, and 10 received slightly
below the minimum), however as the value of K increases,
the impact of the fading diminishes, the line of sight becomes
the dominant and all devices get served. To overcome this
issue, we turn our attention to evaluate Enhanced-algorithm in
problem PE . Here, again the UAV will fly using the trajectory
of P1L (i.e., using the simple A2G channel), but as the
UAV operates, at each time slot, it collects accurate CSI from
the location, and allocates radio resources to serve the IoT
devices served by the path loss trajectory with their service
amounts. The results are depicted in Fig. 4b, where we show
the service amount attained by each IoT device, for the path
loss channel, the Rician (K = 3) and Rayleigh (K = 0)
channel with knowledge of CSI at each slot. Surprisingly, PE

8
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(a) Path-loss channel. (b) A priori knowledge, Rician channel K = 3.

Fig. 3: UAV trajectory to maximize the number of served IoT devices.

is always able to allocate resources so that devices attain their
minimum amount; this is possible through keeping track of the
surplus and deficit in service amount for each device along
the trajectory, so any IoT in deficit will be compensated in
subsequent slots if possible.

We present in Fig. 5a the per IoT allocation of resources. It
is observed that at each slot, the UAV allocates radio resources
unequally among the devices, depending on the deadlines
and their locations. We also observe that while serving the
devices, the UAV may allocate the resources in multiple,
not contiguous, time slots (such as the first IoT device) or
in a one-time slot (such as fifth IoT device). Further, the
UAV may not be able to meet the deadlines of all devices.
Although the UAV was able to meet the deadline of the
farthest ones, our proposed solution puts more effort to fulfill
the requirements of the nearest devices within the deadlines
instead of wasting time to fulfill the requirements of farther
ones. To better understand our results, as shown in Fig. 5b,
in the first time slot the UAV increased its speed to reach
the first subset of devices then decelerates to allow enough
time for their data upload before their deadlines expire. It then
accelerates again to reach another subset of devices to collect
their data. The percentage of served IoT devices is another
performance metric we study. Fig. 6a depicts this metric versus
the service amount, and for different deadlines (in time slots
and for a network of 20 devices). Clearly, as we increase the
minimum service amount Smini per IoT device, the UAV will
spend more time and radio resources for collecting the data
from one device before flying to another device to collect its
data. Furthermore, with less strict deadlines, the UAV will
have extra time and enough resources to serve more devices
compared to tighter deadlines. Fig. 6b depicts the percentage
of served IoT devices versus the network size (maximum
number of IoT devices located in the same area); when the
required minimum service amount Smini = 20 bits/Hz, as can
be seen, the percentage of served IoT devices decreases by
increasing the number of IoT devices within the same area.
Since the radio resources and flying time are limited, whenever
more devices are considered within the same area, then less
radio resources are being allocated for each IoT device. In

turn, by increasing the deadlines, the percentage of served
IoT devices will increase as expected since the UAV will have
extra time to allocate more resources. Next, we study the
performance of P2L, whose objective is to find an efficient
trajectory for serving the IoT devices. By inspecting Figs
3a and 3b, we observe a long trajectory with many detours
taken by the UAV to be able to collect information from
the largest number of devices. P2L attempts to find a more
efficient trajectory and Fig. 7a depicts the obtained trajectory
(assuming a path loss channel) for serving the same devices.
This trajectory is indeed more efficient since the UAV avoids
flying back and forth to serve the same device at different time
slots.

It should be noted that owing to the flexibility of the
UAV (rotary-wing UAV), the UAV is able to hover in one
place while collecting data from multiple devices, achieving
the same number of served IoT devices with a minimum
movement. As shown in Fig. 7b, the UAV increases its speed
to serve a subset of devices before decreases its speed for a
certain time for collecting data, then it increases its speed again
to serve another subset of devices. Now, when the trajectory
is optimized, we fly the UAV and study whether the UAV is
able to allocate resources at each slot for the corresponding
devices, taking into account accurate CSI knowledge from that
location. Here, during the flight of the UAV, the UAV collects
information about the channel status, and re-optimizes the
allocation of resources, keeping track of the deficit and surplus
for each IoT along the path. We show in Fig. 8 the results for
different channel realizations. When the fading component is
high (K = 1), we observe, in some of our simulations, the
UAV fails to serve all IoT devices, however when K = 6, and
the path loss becomes dominant, all devices are served. Further
inspecting Fig. 7a, we observe that the UAV may hover far
away from some devices and when the condition of the channel
is degraded, the UAV does not have enough spectral resources
to meet the requirement of the devices. Hence, we conclude
a tradeoff between the enhanced trajectory and the achieved
performance in terms of number of served devices. One can
observe that, although we serve the maximum number of IoT
devices over the period N , it is obvious that the UAV trajectory

9
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(a) SCA-algorithm over Rician channel, varying K.
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(b) Enhanced-algorithm with CSI knowledge.

Fig. 4: Achieved service amount per IoT device.

(a) Resource allocation for each IoT device.
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Fig. 5: Performance of proposed SCA-algorithm.
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Fig. 6: Percentage of served IoT devices for SCA-algorithm.

is not an efficient trajectory. In order to enhance the trajectory,
we follow SCA-distance algorithm proposed in Algorithm 2 to
minimize the flight distance. This achieves the same number
of served IoT devices with much better trajectory. It can be
seen in Fig. 7a, that the same number of IoT devices with
the same deadlines can be served with an enhanced trajectory
without having to fly back and forth.

Next, we compare the energy of both trajectories for SCA-
distance ans SCA-algorithm for the same configuration. We
use the same energy model and the corresponding typical
parameters mentioned in [39]. As shown in Fig. 9, it can
be observed that the proposed SCA-distance shows a lower
energy consumption compared to SCA-algorithm, because the
former allows the UAV to go back and forth to concurrently

10
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(a) UAV Trajectory. (b) UAV Speed.

Fig. 7: Performance of proposed SCA-distance.

(a) K = 1. (b) K = 6

Fig. 8: Achieved service amount over different channel realizations for the Enhanced-algorithm.

collect data from distant IoT devices. Doing so incurs ad-
ditional propulsion energy consumption that can be saved
by minimizing the UAV flight distance as shown for SCA-
distance.
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Fig. 9: Total energy consumption of the UAV.

C. Comparison with Greedy Solutions:
Here, we evaluate the performance of two greedy methods

for determining the UAV trajectory, and compare them to
our proposed solution. The two greedy methods work as
follows. A trajectory is computed either based on the shortest

distance, i.e., the IoT device closest to the current location
is selected to be served, or based on the data deadline, i.e.,
the UAV flies from its location to serve the IoT device with
the strictest latency. Once a trajectory is decided, the UAV
follows the designed path and at each time slot, it allocates
the radio resource to maximize the service rate of each device.
The details of the algorithms are presented in Appendix B.
We compare the performance of these methods with our
SCA-algorithm and SCA-distance methods. The results are
presented in Fig. 10.

In this evaluation, we fix the flying time (N = 90 time
slots), the locations of IoT devices and the deadlines; we
consider a network of M = 20 devices, a minimum service
amount Smini = 60 bits/Hz, and a maximum deadline of
90 time slots. Our proposed algorithms are validated in free
trajectory (i.e. the initial location is determined at [0 400]
while the final location is not set) for a fair comparison.
The trajectory of sub-optimal solution is shown in Fig. 10.a,
where the UAV exploits its mobility as well as the efficient
allocation of radio resources to adapt its trajectory to fly closer
to a subset of devices to meet their deadlines. It can be seen
while considering these parameters, the UAV is able to serve
"15" devices out of "20" (%75). The same percentage can be
achieved with the enhanced proposed trajectory, SCA-distance,

11
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(a) SCA-algorithm. (b) SCA-distance.

(c) Greedy distance-based approach. (d) Greedy deadline-based approach.
Fig. 10: Optimizing the UAV trajectory to maximize the number of served IoT devices for alternative solutions.

as shown in Fig. 10.b, where the trajectory is further optimized
to serve the same number of IoT devices.

In contrast, both greedy approaches optimize the trajectory
of the UAV differently while allocating the whole resources
to one IoT device at a time, as explained in Algorithm 3
in Appendix B. It can be observed from Fig. 10.c, while
considering the maximum speed of the UAV, devices locations
and the expected traveling time, the UAV adapts its trajectory
to serve the closest IoT device regardless of its deadline. It can
also be observed that the UAV misses the most urgent device
while maximizing the number of served ones. The UAV is
able to serve only 11 IoT devices (55%), and this is due to
the fact that along its trajectory, the UAV allocates its radio
resources to serve only one device at a time. In Fig. 10.d,
while considering the most urgent deadline, the maximum
speed and the expected traveling time, the UAV adjusts its
trajectory to serve the most urgent IoT device regardless of
its location. Following this greedy method, the UAV was only
able to collect data from 45% of the IoT devices, and this is
due to the fact that the UAV wastes more time in flying to
reach the device with the strictest deadline and hence ends up
with little time to collect data.

In Fig. 11a, we compare the effect of deadlines on the
performance of the proposed solutions with the greedy as well
as a static benchmark scheme over a period of N = 90 time
slots and minimum service amount Smini = 20 bits/Hz . For
the static UAV scheme, the UAV is located in the middle of
the given area (i.e. located at [400 400]). The comparison

is investigated in different environments, the dense environ-
ment (i.e. M = 40 devices) and sparse environment (i.e.
M = 10 devices). It can be observed that while increasing
the maximum deadline the SCA-algorithm achieves higher
performance compared to the other approaches. The UAV then
is able to optimize both its trajectory and radio resources to fly
closer to multiple IoT devices to serve them simultaneously to
maximize the served IoT devices. We also observe that when
the deadline is very tight, the static achieves best performance
since the UAV does not waste any time flying, but rather
spends all its time serving the IoT devices. However, as the
deadline starts increasing, the percentage of served devices
starts to increase, especially in the proposed method as well
as the greedy methods, both for sparse and dense networks.
Our proposed method indeed achieves superior performance
against the other methods because concurrently the trajectory
as well as the allocation of radio resources are optimized to
serve the maximum number of devices. In contrast, the greedy
methods follow each a trajectory that is somehow oblivious to
the objective of serving the largest number of devices. In both
greedy methods, as explained above, the UAV flies either to
the closest device or to the device with the strictest deadline,
and allocates all resources to serve that device. Along the
process, some time gets lost due to the abundance of radio
resources which could be used to serve more devices. It is
also shown in Fig. 11a that the distance-based greedy approach
achieves better performance than the deadline-based since the
latter makes the UAV waste more time to fly closer to the IoT

12
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Fig. 11: Percentage of served IoT devices for SCA-distance compared to alternative solutions.

device with strictest deadline.
Next, we study the impact of the minimum service amount

Smini on the performance of the different possible solutions
with maximum deadline 90 time slots and over a period of
N = 90 time slots. As shown in Fig. 11b, with the lower
service amount, optimizing the radio resources is sufficient
to maximize the number of served IoT devices as illustrated
for the static and SCA-algorithm. We also observe that, with
increasing the minimum service amount, it is obvious that the
static UAV will not be able to collect the required data by only
optimizing the radio resources. Optimizing the UAV trajectory
becomes more crucial for achieving better communication
channels to increase the transmission rate with larger minimum
service amount. For example, in the sparse environment (i.e.
M = 10 devices) to achieve the minimum service amount of
20 bits/Hz , the percentage of served devices for our proposed
solution is almost 88% of the total number of devices with
optimizing the resources and the UAV trajectory compared
to. On the other hand, by increasing the number of devices
(i.e. increase the density), optimizing the resources becomes
significant to serve more devices. By comparing the greedy
approaches with the proposed algorithm with increasing the
minimum service amount, our proposed solution achieves
higher performance since the trajectory and radio resources
are jointly optimized.

VIII. CONCLUSION AND FUTURE WORK

This paper studied the time constrained data collection from
IoT devices. Since IoT devices have different QoS require-
ments within certain deadlines, the UAV trajectory and radio
resource allocation are optimized to collect a differentiated
amount of data from IoT devices. We formulated our optimiza-
tion problem to maximize the number of served IoT devices
while guaranteeing the minimal amount of data uploaded
from each served device within the given deadline. Although
our problem is non-convex, we solved it optimally by BRB
algorithm. By convexifying our problem we provided a low
complexity solution to solve our problem efficiently, then we
extended the solution to generate an enhanced trajectory in
order to minimize the distance traveled by the UAV while
serving the IoT devices. Under variable deadlines and min-

imum service amounts, our proposed solution outperformed
alternative solutions including distance- and deadline-based
greedy approaches, and static UAV placement in terms of
the percentage of served IoT devices (average improvement
of 10% - 50%). Our results showed that one UAV alone
is not enough to meet the requirements of all IoT devices
in a timely manner; a future extension of this work could
be a joint optimization of trajectories and radio resources
allocation of multiple UAVs. On the other hand, recall that
the performance of timely data collection in this paper was
investigated for orthogonal multiple access (OMA), therefore,
non-orthogonal multiple access (NOMA) based UAV should
also be considered in future work to accommodate large
number of IoT devices. Moreover, studying the UAV and
IoT energy consumption for time-constrained data collection
scenario will be another direction that we will explore.

APPENDIX A
PROOF OF THE EQUIVALENCE BETWEEN P1 AND P1O

To prove that P1 and P1O are equivalent, we must prove
that any feasible solution of P1 is also a feasible solution of
P1O. Conversely, from any feasible solution of P1O, we can
always find a feasible solution of P1. Assume that X̆, Y̆, B̆, Ŭ
is a feasible solution set of P1O. It is easy to remark that since
X̆, Y̆, B̆, Ŭ satisfy all constraints (10c)-(10g) of P1. Now, we
need to prove X̆, Y̆, B̆, Ŭ also satisfy (10b). We can prove it
as follows:

Since: ŭni ≤ log2

(
1 + Υi,n(x̆n, y̆n)

)
,

⇒ b̆
n
i ŭni ≤ b̆

n
i log2

(
1 + Υi,n(x̆n, y̆n)

)
,

⇒ δt

δi∑
n=τi

b̆
n
i ŭni ≤ δt

δi∑
n=τi

b̆
n
i log2

(
1+Υi,n(x̆n, y̆n)

)
,

(21)

Let us denote δt
∑δi
n=τi

b̆
n

i log2

(
1 + Υi,n(x̆n, y̆n)

)
=

Si(b̆
n

i , x̆
n, y̆n), then we obtain Si(b̆

n

i , x̆
n, y̆n) ≥

δt
∑δi
n=τi

b̆
n

i ŭni . At this point δt
∑δi
n=τi

b̆
n

i ŭni can take either
one of two values, for instance, δt

∑δi
n=τi

b̆
n

i ŭni ≥ Smini or
δt
∑δi
n=τi

b̆
n

i ŭni < Smini . Based on this, we can determine K̆
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as a function of X̆, Y̆, B̆, Ŭ to satisfy (10b). In particular

If: δt

δi∑
n=τi

b̆
n
i ŭni ≥ Smini , ⇒ κ˘i = 1

If: δt

δi∑
n=τi

b̆
n
i ŭni < Smini , ⇒ κ˘i = 0

(22)

In conclusion, we can determine X̆, Y̆, B̆, K̆ from X̆, Y̆, B̆, Ŭ
to satisfy (10b). On the other hand, assume that Ẍ, Ÿ, B̈, K̈ is a
feasible set of solution of P1. It is easy to remark that since Ẍ,
Ÿ, B̈, K̈ satisfy all constraints (2), (6), (7), (10f), (10g) of P1O.
Now, we need to prove Ẍ, Ÿ, B̈, K̈ also satisfy (11b). Since
we got δt

∑δi
n=τi

b̈ni log2

(
1 + Υi,n(ẍn, ÿn)

)
≥ κ¨iSmini . Let

us denote üni = log2

(
1 + Υi,n(ẍn, ÿn)

)
, then this notation

makes (11b) satisfied. Let us assume X̋, Y̋, B̋, K̋ is the
optimum solution of P1. We have to prove that X̋, Y̋, B̋,
K̋ is the optimum solution of P1O. This can be shown by
contradiction. Assuming X̋, Y̋, B̋, Ű is not the optimum
solution of P1O, this means that there exists another solution
denoted by X̄, Ȳ, B̄, K̄ which results in a larger objective
function of P1O. This means that there exists an index i1
which makes δt

∑δi1
n=τi1

b̄ni1 ūni1 − Smini1
≥ 0, while it is

δt
∑δi1
n=τi1

b̋
n

i1 űni1−S
min
i1

< 0. Now, from i1 we can determine
κ¯i1 = 1, while κ˝i1 = 0, thus,

∑
i∈M κ¯i >

∑
i∈M κ˝i.

This means that there is at least one more served IoT device,
which contradicts the assumption of optimality. This completes
this part of the proof. Similarly, we can prove any optimum
solution of P1O is also optimum of P1. This completes the
proof.

APPENDIX B
GREEDY LOCATION/DEADLINE-BASED ALGORITHMS

In this Appendix, we summarize two greedy approaches as
benchmarks to solve our trajectory optimization problem. Two
approaches have been devised to find the trajectory of the
UAV. The first approach is based on the minimum distance,
where the UAV flies and hovers above the closest IoT device
and allocate all resources to the IoT device if and only if
the UAV speed, flying time, and minimum service constraints
are satisfied. It is worth mentioning that by knowing the
locations of the IoT devices the above constraints could be
checked without applying an optimization checking at the
intermediate steps. The UAV keeps repeating the same process
either until no more IoT devices can be served or mission time
is over. The second approach decides the trajectory of the UAV
by allocating all the resources to serve the IoT device with
the most urgent (shortest) deadline if and only if the above
constraints are satisfied. The two approaches are described in
Algorithm 3.
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