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Latency and Reliability-Aware Workload
Assignment in IoT Networks with Mobile Edge
Clouds

Nouha Kherraf, Sanaa Sharafeddine, Chadi Assi, Ali Ghrayeb

Abstract—Along with the dramatic increase in the number
of 10T devices, different IoT services with heterogeneous QoS
requirements are evolving with the aim of making the current
society smarter and more connected. In order to deliver such
services to the end users, the network infrastructure has to ac-
commodate the tremendous workload generated by the smart de-
vices and their heterogeneous and stringent latency and reliability
requirements. This would only be possible with the emergence of
ultra reliable low latency communications (uRLLC) promised
by 5G. Mobile Edge Computing (MEC) has emerged as an
enabling technology to help with the realization of such services
by bringing the remote computing and storage capabilities of
the cloud closer to the users. However, integrating uRLLC with
MEC would require the network operator to efficiently map the
generated workloads to MEC nodes along with resolving the
trade-off between the latency and reliability requirements. Thus,
we study in this paper the problem of Workload Assignment (WA)
and formulate it as a Mixed Integer Program (MIP) to decide on
the assignment of the workloads to the available MEC nodes. Due
to the complexity of the WA problem, we decompose the problem
into two subproblems; Reliability Aware Candidate Selection
(RACS) and Latency Aware Workload Assignment (LAWA-MIP).
We evaluate the performance of the decomposition approach and
propose a more scalable approach; Tabu meta-heuristic (WA-
Tabu). Through extensive numerical evaluation, we analyze the
performance and show the efficiency of our proposed approach
under different system parameters.

I. INTRODUCTION

The Internet of Things (IoT) paradigm has emerged to
shape the future of the Internet since 1999 [1]. It is quickly
evolving to be an intrinsic part of our daily lives, where
everyday’s objects are embedded with transceivers, protocols
and microcontrollers turning them into smart things that can
communicate with each other [2]. In the current era of smart
things, novel use cases (e.g., Tactile Internet, Intelligent Trans-
portation Systems (ITS), Tele-surgery, etc.) are contributing
to the evolution of mega smart cities [3] [4]. Such cities
exploit those applications to enhance the quality of life by
providing seamless services (i.e., e-health care, intelligent
transportation, smart everything, etc) to end users. However,
in order to offer the immersive experience these applications
promise, low latency (within milliseconds) and high reliability
(less than 105 packet loss rate) are indispensable [5]. Such
requirements would only be possible with the emergence of
ultra-reliable low latency communications (URLLC) promised
by the fifth generation mobile communication system (5G).

The terms reliability and latency are indeed broad terms
which encompass different meaning based on their definitions.

For instance, latency could be defined as the end-to-end la-
tency caused by transmission, queuing, and processing delays
[6]. Further, Reliability - in general - denotes the probability
of successfully transmitting packets over a period of time.
Reliability could, however, also refer to the availability of
a service a particular application demands [7]. Hence, it is
essential to properly define both terms. For the sake of clarity,
in the rest of this paper the term latency is defined as the
end-to-end latency and reliability as the availability of the
service; for instance, an availability of 99.999% means that
the service is available to end users 99.999% of the time [8].

Within this uRLLC realm, future networks will need to be
designed upon three building blocks; 7)Scale: accommodation
of the huge number of devices and the volume of data they
produce i) Risk: robustness towards uncertainty and sudden
system changes and iii)Tail: dealing with the tail behavior
of traffic distribution considering the heterogeneity and ran-
domness of latency and reliability requirements [6]. Building
such network is plausible by leveraging technologies such as
pervasive Al, massive network densification, new radio (NR)
and advanced wireless access, exploiting new spectrum at high
frequency bands (e.g. mmWave) [6], [9], [10]. One of the
rather appealing enablers for this vision is Mobile Edge Com-
puting (MEC) [11], [12]. MEC is an emerging computation
paradigm that was introduced to overcome the high latency
and low reliability of communication resulting from the large
distance between the end users and the cloud [13]. In an MEC
infrastructure, the cloud capabilities are brought closer to the
IoT devices (e.g. smart cameras, industrial sensors, etc.) by
equipping the nearby 4G/5G Base Stations (BSs) or WiFi
Access Points (APs) with computing and storage capabilities,
creating an MEC node. Traditionally, the MEC nodes host
Virtual Machines (VMs) running different IoT applications
to serve the IoT devices. Hence, IoT devices can offload
their computationally intensive workloads to the MEC nodes
located at a close proximity to them, rather than the distant
cloud, and thus, reducing latency and ensuring a more reliable
network [12] [14].

Now, to realize the vision of a smart city with massive
IoT integration, provisioning necessary MEC resources to
fulfil the anticipated uRLLC requirement would ensure a
seamless delivery of services and a satisfactory Quality of
Experience (QoE) for end users. However, a critical aspect
of this adoption is considering the various underlying trade-
offs in a uRLLC environment. Some of these trade-offs could
arise between latency, reliability, energy consumption, spectral



efficiency, SNR, etc,. For instance, a fundamental trade-off,
where intensive research has been done, is between latency and
energy consumption in which the device would consume more
energy by periodically checking for packet delivery; the more
frequent checks, the lower the latency but the higher energy
consumption [6]. One of the less tackled trade-offs is between
latency and reliability. For instance, different devices (smart
sensors, smart cameras, etc.) generate a shear volume of data
to be offloaded to the MEC nodes to provide a specific type
of service (Tactile Internet, Process Automation, etc.). Since
each service has both reliability and latency requirements,
offloading the workload to an MEC node that satisfies the
latency constraint does not guarantee achieving the required
reliability and vice versa. Hence, a decision needs to be made
on which MEC node the workload should be processed to
satisfy and optimize both requirements. Moreover, the gener-
ated workload is subject to different failure scenarios either
through accessing the network; communication link failures
(due to jamming and equipment failure) or being processed
on an MEC node; MEC node failure (DoS attacks, hardware
failure) [15], causing the service to be unavailable to the end
user. Therefore, achieving the ultra high reliability demanded
by the IoT services coupled with the aforementioned failure
scenarios may require repeated transmissions which would
incur higher latency [6]. Some work has been done to address
the reliability and latency in mobile edge computing either
jointly or separately. For instance, the authors in [15] con-
sidered the probability of occurrences of failure scenarios for
both communication and MEC nodes. Further, the work in [13]
addressed the problem of workload assignment considering the
latency and transmission reliability. However, to the best of
our knowledge, no work has considered the reliability of the
individual MEC nodes along with the specific reliability and
delay requirements of the IoT services.

In this paper, we consider a smart environment integrated
with IoT capabilities and devices which enable intelligent and
innovative applications and services to various emerging ver-
ticals. We assume each enabled service generates a workload
with particular requirements in terms of latency and reliability.
IoT applications are hosted at the network edge on MEC nodes
and we assume that MEC nodes, being hardware with software
elements, have their own availability (a hardware/software may
fail due to a multitude of reasons as mentioned earlier). We
assume the generated IoT load is dispersed across a wide
area covered by a communication infrastructure (e.g., 5G
and/or WiFi). The generated load demands services with QoS
requirements (latency and reliability) which may be provided
by IoT applications hosted at the network edge. For instance,
a request for process automation generated by a sensor in a
smart factory would require to be authenticated (among other
possible security processing), and the authentication function
is placed in close proximity at the network edge.

We hence address the heterogenous Workload Assignment
(WA) problem taking into account the various incurred delays
as well as the reliability of MEC nodes. We formulate the
WA problem as a Mixed Integer Program (WA-MIP) with
the objective of maximizing the admitted load with respect
to the latency and reliability requirements. Intuitively, higher

reliability is achieved by replicating the load onto applications
on one or more of the MEC nodes; however, this yields
higher loads and accordingly higher latencies for servicing
the load. This interplay between reliability and latency is also
explored. We show that the WA-MIP is NP-Hard, and hence,
we propose an efficient decomposition approach (WA-D) that
first solves the resiliency problem and then the latency prob-
lem. Thus, WA-MIP is decomposed into two sub-problems,
1) The Reliability Aware Candidate Selection (RACS) sub-
problem which is tackled by a heuristic search to determine
the set of potential MEC nodes satisfying the demanded ultra
high reliability requirements per IoT service. 2) The Latency
Aware Workload Assignment (LAWA) sub-problem which is
formulated as a MIP that takes the solution of RACS as
an input and determines the optimal workload assignment
with respect to the latency requirements. Through extensive
numerical evaluation we show that the WA-D is more scalable
than the WA-MIP, but nonetheless remains unscalable for very
large instances. Therefore, we propose a Tabu-search-based
meta-heuristic approach (WA-Tabu) to solve the WA problem.

The remainder of this paper is organized as follows. Section
IT presents the related work, the system model is introduced
in II1, the problem is formulated as a MIP in IV, the proposed
WA-D approach is discussed in V and the WA-Tabu in VI .
The numerical evaluation and conclusion are presented in VII
and VIII respectively.

II. RELATED WORK

One of the rather disruptive advancements in the IoT indus-
try is the introduction of 5G and its promise of uRLLC. Some
work has been done on the feasibility of 5G and uRLLC within
the context of IoT. Specifically, the authors in [16] studied the
use of uRLLC in factory automation and proved its feasibility
in factory automation with latency of sub milliseconds and
failure rate of 10~9. Further, the work in [17] studied the
feasibility of 5G mm-wave as an enabler to Connected Au-
tonomous Vehicles (CAV) applications. It was concluded that
the 5G mm-wave satisfied the latency requirements of safety-
critical applications and achieved high data rates sufficient for
real-time applications (e.g. video streams processing for in-
vehicle infotainment system). Further, extensive work has been
done exploring the possibilities and use cases of MEC as a key
technology for the inception of uRLLC in an IoT environment.
For instance, the authors in [18] presented a detailed survey
on MEC and its integral part in the development of 5G. The
authors explored the various MEC use cases and challenges
within the context of IoT and smart cities. Some of the
challenges the authors presented was the service orchestra-
tion; optimizing the synergies between the different entities
in an edge network (MEC nodes dimensioning, applications
placements and workload assignment), as well as service
enhancements; improving the users’ quality of experience
(QoE) and achieving resiliency.

A. Latency in MEC & IoT infrastructure

Many research has focused on workload offloading in
an MEC infrastructure with an emphasis on the end-to-end



latency. For instance, Xiang et al. in [19] considered a network
where multiple users are offloading their workload to the ge-
ographically distributed MEC nodes. They proposed a latency
aware offloading framework that minimizes the total response
time incurred by the users’ workload. Further, the work done
in [14] discussed the provisioning of resources (edge servers
and applications) as well as the workload assignment. The
authors formulated the problem as a Mixed Integer Program
(MIP) with the objective of minimizing the cost with respect
to latency requirements of different industry verticals. A more
realistic model is when latency is coupled with another system
design parameter. For example, in [20], the authors considered
the trade-off between energy consumption and latency by ad-
dressing workload offloading problem in an IoT environment.
Their proposed framework optimizes the energy consumption
and the system utility while respecting the latency requirement.

B. Reliability in MEC & IoT infrastructure

Unlike latency, little research has considered the reliability
issues in MEC and IoT context, let alone considering the trade-
off between reliability and latency together.

In [13] the tradeoff between latency and reliability was
studied. The problem was formulated to jointly minimize the
end to end latency and the failure probability of offloading
tasks to MEC nodes. Further, the authors only considered
the transmission reliability(offloading failure probability), and
only one user with one task to be offloaded. The task is
partitioned into subtasks, where each is transmitted using
the whole channel bandwidth in a sequential manner. It was
concluded that the higher channel quality, the better achieved
reliability. On the other hand, the authors in [15] formulated
an ILP to minimize the operational cost of placing Virtual
Process Control Functions (VPFs) on MEC nodes with respect
to capacity and resiliency constraints for different failure
scenarios. The failures are due to either MEC node failure or
communication link failure. Each failure scenario is assigned
a probability based on historical data. Due to the complexity
of the problem, the authors developed an iterative algorithm
that uses the generalized Benders Decomposition and linear
relaxation to reduce the search space. Further, the work in
[21] considered an environment with uRLLC and targeted the
task offloading and allocation problems with the objective of
minimizing the users’ power consumption. While the authors
in [22] assumed that all tasks are offloaded to the network
edge and they targeted the tasks assignment problem with
the objective of minimizing the tasks’ total experienced delay
with respect to reliability constraints. Both works [21] and
[22] were satisfying the reliability by imposing a probabilistic
constraint that ensures that the latency is bounded by a
threshold with a specific probability. However, non-of them
considered the specific reliability requirements of the services
demanded by the workloads.

C. Novelty of our work in comparison to the literature

In the aforementioned work, most of the authors often
considered the latency requirements and overlooked the reli-
ability demands. However, the few works that considered the

reliability; communication link failure or MEC node failure,
considered a single user task and its end to end delay [13], or
the latency was neglected [15]. Further, in both works [13] and
[15], the specific service reliability and latency requirements
were not considered and they were not tailored towards an
IoT context. To the best of our knowledge, our work is the
first to consider the workload assignment problem in a densely
populated, MEC-enabled IoT environment with multiple work-
loads/IoT devices while considering both ultra high reliability
and low latency requirements of the IoT services, and the
availability of the MEC nodes.

III. SYSTEM MODEL

We depict our system model in Figure 1 which consists of
a smart environment where different IoT devices are spatially
distributed and connected through a communication network
(e.g., nearby WiFi APs or cellular BSs). IoT devices generate
a tremendous workload by requesting [oT services enabled by
IoT applications of different types and capabilities hosted on
MEC nodes. Serving the IoT devices does not only depend on
their requested services’ types, but also on the service’s latency
and reliability requirements. In what follows, we formally
explain the network, reliability and latency models.

A. Network model

Formally, the network is represented by a graph G(N, E)
where E is the set of communication links connecting a set
of nodes N. N(= L U R) is composed of communication
elements, such as APs/BSs, dispersed at different locations
l € L, and the networking equipment R (routers, switches,
etc.). We assume a set M of MEC nodes deployed nearby
the APs/BSs, and hence, we denote by wﬁn that MEC node
m € M is located at [ € L. IoT devices are connected to their
nearby WiFi APs or cellular BSs located at locations [ € L to
access services provided by IoT applications hosted on MEC
nodes. Therefore, a set A of 10T applications is assumed to be
hosted on Virtual Machines (VMs) running on MEC nodes.
Each application a € A is assigned a processing capacity
P to process the corresponding workload generated by IoT
devices. Further, we define o' to indicate which MEC node
m € M is hosting application a € A. Each application a € A
is providing a specific service type requested by the IoT load.
We use 7T to denote the set of all types of IoT applications. In
addition, the parameter u! represents whether IoT application
a € A is of type t € T. For the sake of simplicity, we assume
that each MEC node m € M is hosting one instance of each
IoT application providing a service of type ¢t € T', and hence,
all MEC nodes are capable of supporting all IoT applications’
types. For instance, in a smart hospital environment, IoT
devices are collecting various environmental data (temperature,
humidity, etc.) to regulate the surroundings and vital data to
monitor the patients. In order to deliver such functionalities,
the IoT devices would offload their data to the MEC nodes
requesting it to be processed by IoT applications providing
1) temperature monitoring and 2) patient tracking services.
Hence, all MEC nodes would be running two applications,
each providing one of the previously mentioned IoT services.
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Fig. 1: IoT enabled smart environment

B. Reliability and latency model

IoT devices offload their workload onto MEC nodes to be
processed by IoT applications providing a service of the cor-
responding type. For simplicity and without loss of generality,
we consider the aggregate demand generated by all IoT devices
located at [ € L and requesting IoT application of type t € T'.
This aggregate demand is assumed to follow a Poisson process
with an arrival rate of )\f (requests/sec), and has an average
computing size of wy; (CPUcycles) per request [19][14].
Different demanded IoT services, with stringent latency and
reliability figures, are offered by applications providing the
same service type ¢t € T' to ensure a seamless experience and a
satisfactory QoS. For instance, in order to provide the ultimate
experience promised by ITS, latency has to be as low as
10— 100ms and an almost guaranteed reliability of 99.9999%
[5]. Consequently, we denote by d; and 7; the maximum
allowable response time when using an IoT application of
type t, and the minimum reliability required by the requested
service of type ¢ € T respectively. Within this framework,
we model each IoT application as an M /M /1 queue with an
average arrival rate of IoT devices’ requests (\}) and a service
rate determined by p, and w;. Further, we consider scenarios
where the IoT devices” workload may not be assigned to the
MEC node at which it was generated (home node), but it is
routed to another MEC node. This could be due to insufficient
computing capacity and/or failure to satisfy the latency or
reliability requirements. Hence, we define hfl to depict the
network delay incurred from redirecting the load from its
home MEC node at location [ to the MEC node at location [’.
Therefore, the total delay experienced by a workload offloaded
and processed by an application running on an MEC node is
calculated as in Eq.(1) that will be explained in details in
section IV.

1

Delayiora = 2(h!
€laYtotal (h)+ ServiceRate — Arrival Rate

D

Similarly, some failure scenarios could result in the IoT
workload not being processed or transmitted. These failures
could be due to transmission link failures resulting from
jamming, denial of service attacks or hardware failure (MEC
node failures) which could happen due to equipment error,
cyber attacks, etc [15]. Some other work has already addressed
the transmission failures [13]. Given that the IoT applications
are hosted on VMs running on the MEC nodes, a failure of
the MEC node would result in the failure of executing the
IoT application. In other words, the IoT applications inherit
the reliability of their hosting MEC nodes. Hence, we assign
a reliability 6,, for each MEC node m € M to depict its
availability. This probability is assigned based on historical
data of the average repair time and time between failures [23].
In order to achieve the required service reliability demanded
by the workload, we replicate the load and assign it to one or
more applications hosted by one or more MEC nodes such that
the required reliability is met. Therefore, the overall achieved
reliability of a certain workload is the probability that at least
one MEC node that can process it, is available as shown in

2).

Reliabilityachieved = 1 — H (1—6,) )
meM

Hence, the more MEC nodes accepting the workload replicas,
the higher the achieved reliability. This is demonstrated in the
following illustrative example.

Hllustrative example: Consider five locations; l1, 2, 13,14,15
in a smart environment where workloads are generated re-
questing different IoT services. Specifically, workload gen-
erated from [; is requesting tele-surgery services, while the
workloads generated from l» and I3 are requesting process
automation services. The arrival rate ()\f) for each generated
load from location [ € L requesting [oT service of type ¢t € T’
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To ensure a satisfactory quality of service, the workload from
each location has to be completed within a specific window
of time and it has to be served with an ultra high reliability.
The response times and reliabilities of the IoT services are
listed in Table I. Particularly, workload requesting tele-surgery
service has to be processed within 50ms and guaranteed
an availability of 99.99%, and workload requesting process
automation service requires a response time of 100ms and a
reliability of 99.9%. To accommodate these requirements, we
consider five MEC nodes my, mo, ms, my, ms each with
reliability 6,, of 0.96, 0.96, 0.9, 0.9, and 0.9 respectively.
Each MEC node hosts two IoT applications, each providing
tele-surgery and process automation services. Specifically, let
a1, as, as, ay, ag be the applications providing tele-surgery
services while process automation services are provided by
as, a4, ag, ag and ajg. Moreover, let my, mo, ms, my and
ms be located at Iy, ls, I3, l4 and I5 respectively. For the sake
of simplicity we assume that the network delay is 1.5ms for
all MEC nodes. In addition, we assume that the service rate
Be (requests/sec) of all applications of type tele-surgery is
150requests/sec and that of applications of type process au-
tomation is 300requests/sec. In this example, we start off by
considering only two workloads are generated from locations;
l; and Iy as shown in Figure 2(a). With the aforementioned
assumptions, workload generated from /; could not be sent to
only one MEC node as none satisfies its required reliability
individually. Consequently, the workload has to be replicated
to multiple MEC nodes to achieve its required reliability. The
achieved reliability resulting from replicating and sending the
workload generated from [; to MEC nodes mi, mo, mg and
my is 0.99998, thus, satisfying its requested service reliability
requirement (0.9999). In fact, the workload generated from [;
could be assigned to any combination of MEC nodes satisfying
its reliability according to Eq.(2). Moreover, the maximum
total delay incurred by the workload when processed by one
of the latter MEC nodes, according to Eq.(1), is:

1
* 150 — 100

Hence, the workload generated at [y is assigned to mi, mo,
mgs and my. Similarly, the workload generated from [y could
be sent to any combination of MEC nodes that satisfies
its reliability and latency requirements (e.g.{mq,ms,my4},
{m1, ma,m3}, etc.). Let ma, m3 and my4 be the MEC nodes
that the load is assigned to since the maximum total delay
incurred by the workload is 23ms (< 100ms) and the achieved
reliability is 0.9996 (> 0.999).

Now, we consider another load that is generated from
location I3 requesting process automation service as shown in
Figure 2(b). The requested service reliability (0.999) would be
met by replicating the load and mapping it to any combination
of MEC nodes that satisfies its required reliability such as
{ma,ms,my}, {m1,ma, mg} and {my, ms, ms}. However,

2(1.5ms) = 23ms < 50ms

. o Allowable response

IoT service Reliability (%) time (ms) Used §; (ms)
Factory- 99.999 0.25-10 10
automation

Smart Grids 99.999 3-20 20

ITS 99.9999 10-100 30
Tele-surgery 99.99 <=250 50
Process- 99.9 50-100 100
automation

TABLE I: IoT QoS requirements for different industry verti-
cals

since {mo, ms,m4} has already a load assigned to it from
Iy requesting the same service process automation, assigning
the new workload generated from [3 to the same MEC nodes
would incur an additional queuing delay at the applications
providing service of type process automation running on
those MEC nodes. Therefore, the total delay incurred by the
workload generated at [3 if assigned to {ms, ms, m4} would
be given by

1
300 = (250 + 40)

Similarly, this workload can not be assigned to any combi-
nation of MEC nodes that contains ms or m,4 as it would
incur 3ms additional network delay which would result in
a total delay of 103ms violating the latency requirement of
100ms. Thus, the workload from I3 is replicated and sent
to {my, m3, ms} which satisfies the latency and reliability
requirements with a total delay of 100ms and an achieved
reliability of 0.9996.

From this example, it can be seen that determining an op-
timal workload assignment is challenging where the objective
is to satisfy most of the users’ requests along with their low
latency and ultra high reliability requirements.

2(1.5ms) = 103ms % 100ms

IV. THE URLLC-AWARE WORKLOAD ASSIGNMENT
PROBLEM

A. Problem definition

Definition 1. Given G(N,E), a set M of deployed MEC
nodes, a set A of IoT applications of different types t € T
hosted on the given MEC nodes, and a set of heterogeneous
IoT loads requesting services of different types provided by
the IoT applications, determine the optimal assignment of the
generated workloads to loT applications that maximizes the
admitted load, satisfying each type’s latency 6, and reliability
T requirements.

B. Problem formulation

Table II shows the parameters used throughout the formu-
lation of the defined workload assignment problem that is
referred to as WA-MIP and presented below. We define a
variable ! € [0, 1] to determine the fraction of load generated
from location [ and requesting service of type t, that can be
admitted to the network, and hence our objective becomes:

Maximize Z Z P 3)

leL teT
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Network Inputs

G(N,E) Network of N nodes where N = LU R and E
links connecting them.

L Set of locations where APs/BSs are mounted.

R Set of network equipment.

M Set of MEC nodes in G(N, E).

A Set of IoT applications hosted on m € M.

T Set of IoT applications’ types.

nl, € {0,1}  Parameter which depicts that MEC node m € M
is deployed at location [ € L (1) or not (0).

pt €{0,1}  Parameter which depicts that application a € A is
of type t € T' (1) or not (0).

o' € {0,1} Parameter to depict that application a € A is
hosted on MEC node m € M (1) or not (0).

5 € RT Maximum allowable response time required by an
application providing service of type t € T'.

r, € RT Minimum required reliability of IoT service of
type t € T

O € RT Reliability of MEC node m € M.

p* € RT Processing capacity of application a € A hosted
onm € M.

N eZ* Arrival rate of requests for an application of type
t € T generated by IoT devices located at [ € L.

wy € ZF Average number of CPU cycles per request for an
application of type ¢ .

hﬁ/ eERT Network delay of a request from its home MEC

node at [ € L to its assigned MEC node at I’ € L.
TABLE II: Parameters of WA-MIP.

That is to maximize the percentage of admitted load subject to
the reliability and latency constraints. To realize our objective,
we introduce a binary decision variable z{ € {0,1} to
determine if a workload generated from location [ € L
requesting IoT service of type ¢ € T' is mapped to application

a € A that is hosted on an MEC node.

if generated workload at location ! demanding ser-
2} = vice of type t is mapped to application a,
0 otherwise.

Further, a new decision variable yj € {0,1} is introduced
to determine if workload generated from location [ € L
requesting service of type ¢ € T is mapped to MEC node
m € M.

if generated workload at location [ demanding ser-
vice of type t is assigned to MEC node m,
0 otherwise.

mo__
Yo =

Let v} € [0,1] indicate the achieved reliability when
processing the workload generated at location [ € L requesting
IoT application of type ¢ € T' at MEC node m € M. Hence,
the following constraints are considered.

1) Workload assignment

We need to make sure that whenever there is a generated

load (A} > 0), it is mapped to an IoT application a € A; i.e.,

zt =1
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where H is a large integer number.
Similarly, the load A/ is mapped to an MEC node m € M;

Y =1
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Furthermore, the generated load is mapped to an application
providing the same requested service type. This is ensured by

Eq.(6).
q.(6) e
Va%A
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Eq.(4)-(6) together ensure that loads would always be assigned
to IoT applications and if there exists no load, there will be
no assignment.

Moreover, Eq.(7) and (8) ensure that whenever a load )\f is
mapped to MEC node m € M (y;; = 1), the load is also
mapped to an application a € A hosted on the same m (2}, =
1), and vice versa.
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2) Reliability constraints:

In order to admit a workload requesting service of type t to
an MEC node m, its requested service requirements should
be met. Hence, the required reliability r; has to be satisfied.
Considering both the service required reliability r; and the
reliability of the MEC node 6,,,, one of two possible outcomes
would occur. The first possibility is that for an MEC node
m € M with reliability 6,,,, the service required reliability
r; is achieved, that is 6,,, > r;. Hence, if the workload is
sent to that MEC node, the achieved reliability would solely
depend on the reliability of the one MEC node processing
it. Therefore, Eq.(9) ensures that the achieved reliability is at
least the required reliability.
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Where r;} is the achieved reliability and is defined as: r}' =
Yy Om.-

When considering all MEC nodes in the network, Eq.9

becomes:
Z leam Z Tt
m

On the other hand, the other possibility would be that the
required service reliability is not met, that is non of the MEC
nodes in the network could satisfy the required reliability
(i.e 0, < 74, Ym). In this case, the workload is replicated
and sent to multiple MEC nodes taking advantage of the
independency of their reliabilities. Hence, the failures of one
MEC node would not influence the availability of the other
MEC nodes. This means that replicating and sending the
workload to multiple MEC nodes would increase the overall
achieved reliability as it would become dependent on the
reliability of the MEC nodes that can accept the workload
and its replicas. Hence, the new achieved reliability becomes
= 1= [Lnerm( = 47 -0m). Eq.(11) makes sure that the
IoT service required reliability is guaranteed:

1= ] =y 0m) =7
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Thus, a decision needs to be made to select the subset of MEC
nodes that will satisfy the required reliability of the requested
service.

3) Latency constraints

The offloaded workload from IoT devices incurs different
types of delays. These delays could be due to accessing
the network (access delay), redirecting the workload from

the home MEC node to another node (network delay) and
queuing and processing delays (system delays). In this paper,
for the sake of simplicity, we consider the access delays to be
negligible. Hence, the total delay incurred by the offloaded
workload is represented solely by the system and network
delays.

We use d™!! . to depict the network delay experienced by
workload generated from location [ requesting service of type
t to be transferred to MEC node m and is given by:
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Further, we define dg‘étstem to represent the system delay. Given
that each IoT application is modeled as M/M/1 queue with an
average arrival rate of >, . zf%,.x},.\}, and service rate of

e the system delay is given by:
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To avoid congestion at the application, the service rate should
be greater than the arrival rate as in Eq.(14).
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Combining both delays together, the total delay D' incurred
by offloading a workload to application a hosted on MEC node
m is:

VieL
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And finally, in order to meet the delay requirements J; of
each IoT service provided by an application of type ¢, we have:

(16)

C. Complexity analysis

The WA is a mixed integer programming problem (MIP)
which is complex and hard to solve. The NP-Hardness can
be easily shown through a reduction from the Generalized
Assignment Problem (GAP) (known to be NP-Hard), where
the workloads represent the items to be assigned to bins (MEC
nodes) [24], [25]. Given its complexity, we devise two different
approaches to solve it.

V. WA-D APPROACH

Solving the workload assignment problem with respect to
both reliability and latency requirements is challenging. To
deal with this complexity, we exploit the independency of
the reliability and latency requirements and decompose the
problem into two subproblems; the Reliability Aware Candi-
date Selection subproblem (RACS) and the Latency Aware
Workload Assignment subproblem (LAWA).



A. RACS heuristic

Given the heterogeneity of the MEC nodes reliabilities, not
all the MEC nodes can admit the workloads coming from the
different locations. Hence, for all workloads generated from
different locations demanding the same service type ¢, a set
S; of potential MEC nodes candidates is generated, where
each element in S; includes a combination of MEC nodes
that together can provide the reliability required by service
type t. The algorithm starts by identifying the set of requested
types by the generated workloads. It then constructs a larger
set of MEC nodes combinations. To avoid generating all
possible combinations (2M — 1), the size of each combination
ranges between one MEC node and a predefined number N
of them. We choose /N based on a worst case scenario; that is
when all MEC nodes have the lowest possible reliability 6,
and a generated load requesting a service having the highest
required reliability r;. Hence, [N is the minimum number of
MEC nodes needed to satisfy the service with the highest
required reliability. Each combination is represented in binary
to simplify the computation and to depict which MEC nodes
are in the set; 0 for m ¢ set and 1 otherwise. For each
requested type, the achieved reliability is computed for each
combination according to Eq.(11). If the achieved reliability
is > r;, the combination is added to S;. The *" element in
the set S; is denoted by S!, and represents either a potential
MEC node or a subset of them, and hence, Sf € S;. We
denote by I the set of all elements belonging to S;. Further,
each element ¢ € [ is weighted and all elements are sorted in
an ascending order according to the weight function defined
in Eq.(17). A pre-defined number of subsets ¢ € [ with the
minimum weights are selected for each S; and passed to the
second subproblem LAWA MIP.

W (MEC nodes subset) =
wy (reliability(M EC nodes subset) — 1)
+ we (| M EC nodes subset|)

st: wyt+wy =1

a7

In other words, the weight function in Eq.(17) ensures using
the available resources (MEC nodes) efficiently by selecting
the elements that precisely satisfy the required reliability
of a specific service of type t. For instance, consider two
elements in S; with the same number of MEC nodes and
a type t workload requesting a service with a reliability of
0.999. Mapping the load to the first element would achieve a
reliability of 0.9999 and mapping it to the second element
would achieve a 0.999999 reliability. Hence, according to
Eq.(17), the load should be assigned to the first subset. Thus,
a predefined number of elements, minimizing the difference
between the required reliability and achieved reliability and
consisting of the lowest number of resources (MEC nodes), is
selected from each S;.

B. LAWA MIP

Given the set S; of the potential MEC nodes for the gen-
erated workloads from different locations demanding service
of type t obtained from the RACS heuristic, the LAWA

MIP determines the optimal candidate S! for each generated
load A!. The optimal candidates are chosen to maximize
the fraction of admitted load while satisfying the workloads’
latency requirements. Here, we should note type ¢ workload
from different locations may contend for the same MEC nodes
(to achieve higher reliability), and as a result the load at one
particular application may increase, and as a result, affecting
the latency. Therefore, selecting the best candidate of MECs
for each IoT workload is what we seek to find. Formally,
we use the decision variable z} € [0,1] as defined in section
IV-B to determine the fraction of admitted load. The LAWA
objective is as depicted in Eq.(18).

Mazimize Z Z Py
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that is to maximize the percentage of admitted load subject to
latency constraints. In order to meet our objective, we define
gt to depict whether the i*" element in the set S; is selected
to process workload A} or not.

9

w ) 1if the i"" element in S, is selected,
0 otherwise.

Further, we use the decision variable 2, € {0,1} as defined in
section IV-B to determine if workload generated from location
| demanding service of type ¢t € T is mapped to application
a € A. Now, Eq.(19) makes sure that at most one element
should be selected from S;.
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We need to make sure that whenever there is a generated
workload demanding service of type ¢ (A} > 0), it is mapped
to an IoT application a € A hosted on an MEC node (2, = 1).
A
2l > T VieL

19)

(20)
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Furthermore, the generated load is mapped to an application
providing the same requested service type. This is ensured by
Eq.(21).

2 < flo- M @1
Egs. (20) and (21) together ensure that loads would always be
assigned to IoT applications and if there exists no load, there
will be no assignment.
Moreover, we need to make sure that the workload )\f is
assigned to an application a € A that is hosted on an MEC
node m € M that is in the i*" element in S;. This is ensured
by Eq.(22).
vteT
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Whenever an element ¢ (subset of MEC nodes) is selected
gt = 1, the load is assigned to all applications of type ¢
hosted on the MEC nodes in S!. This is ensured by Eq.(23).
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Further, we need to make sure that each individual MEC node
in the selected subset S! meets the delay requirements d; of
workload A!. This is verified by Eq.(24).
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To avoid congestion, the service rate should be greater than
the arrival rate. This is ensured by Eq.(25).
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WA-D still requires to solve a MIP, which makes it challenging
to solve the problem. Hence, in the following section we also
propose a meta-heuristic approach (WA-Tabu) to accelerate the
performance of the WA-D.

VI. WA-TABU

Tabu search is a meta-heuristic search method that has been
used to solve NP hard optimization problems, one of which
is the task assignemnt problem [26]. The Tabu search-based
algorithm consists of the following components [27]:

1) Inmitial solution: The WA-Tabu starts by an initialization
step of constructing an initial solution for the workload
assignment to the MEC nodes. This is done by first
generating a set of potential candidates S; for each
requested IoT service type ¢t € T as described in section
V-A. The load assignment is then performed by selecting
the best subset of MEC nodes for each workload. The
selection is based on maximizing the weight function
given in Eq.(26) that is conditioned to satisfy the latency
requirements of the workload’s requested service.

W (Mec nodes subset) = wy(min,:)
— wq (reliability(M EC nodes subset) — )
— w3 (|[MEC nodes subset|)

st: w+wy+wg=1
(26)

where min,; is the fraction of the load that a subset can
admit, determined by the MEC node admitting the least
fraction of load. In other words, the best subset of MEC
nodes is the one satisfying the latency requirement of the
workload’s requested service, maximizing the percentage
of admitted load, minimizing the difference between the
required and the achieved reliability, and using the lowest
number of resources (MEC nodes). The priority of load
assignment is then calculated for each load based on the
priority function given in Eq.(27) and the load with the
highest priority is assigned. The process repeats until all
loads are considered.

P(\)) = W(Best MEC nodes subset)

nd 27
— W (2" Best MEC nodes subset)

2) Neighborhood solutions: Given the initial load assign-
ment, the algorithm searches for improving the workload
assignment in the neighborhood of the current solution
based on the weight function defined in Eq.(26). Within
this context, a neighborhood is defined as any solution
that involves shifting a workload from the MEC nodes
subset that is assigned to, to another. In order to reduce
the search space, we consider shifting loads from the
most loaded subsets to the least. Hence, if an improved
workload assignment is found, the initial load assignment
is updated. If, however, no improving assignments were
found, the algorithm finds the first non-improving assign-
ment by allowing shifting a workload to the first subset
yielding less weight. This raises the chances of reaching
a global maximum.

3) Tabu list: A tabu move is defined as shifting the load
assignment of a workload from the more loaded subsets
to the less loaded. Once the shift is performed, the tabu
move is added to the tabu list where it is not considered
for the next tabulListSize iterations. This prevents the
workload from cycling back to its original subset before
allowing other possible moves to be considered. Further,
choosing a solution with a lower weight than the current
solution is also considered as a tabu move.

4) Aspiration criterion: In certain scenarios, we allow the
violation of the tabu status of moves if the move gives a
better solution than the best solution found so far.

5) Stopping criteria: The algorithm iterates until:

¢ A maximum number of iterations is reached.
o All the loads are admitted.

The pseudocode for the Tabu-search is shown in Algo-
rithm 1.

VII. NUMERICAL EVALUATION

In this section, we compare the performance of WA-MIP,
WA-D and WA-Tabu through extensive numerical evaluation.
Further, we evaluate the efficiency of our proposed WA-Tabu
approach under varying system parameters.

A. Experimental setup

To evaluate our algorithms, we consider a network with
L = 25 locations (unless stated otherwise) where at each
location an MEC node is deployed. Each MEC node has a
reliability 6, that is randomly generated between [0.9 — 0.96]
[28]. Further, from each location a workload is generated
with an average arrival rate A} taking random values between
[70 — 300)requests/sec. The generated workloads request
different types of IoT services with various latency and reli-
ability requirements. Hence, we consider T' = 4 types of IoT
services corresponding to the industry verticals and their QoS
requirements presented in Table I, which yields an aggregate
load of [Tk — 30k]requests/sec. In addition, for each of the
requested types, we assume an average computing size w; gen-
erated randomly between 1 x 10° and 2 x 10C PUcycles per
request. In order to accommodate the generated workload, we
consider applications providing different IoT services hosted



Algorithm 1 WA-Tabu

1: Input:

2 yjtcurrent, xtcurrent: initial solution

3: tabuMove : (I,t, subsetoriginal, Subsetpeuy)

4: TabuList: holds tabu moves

5: TabuListSize: indicates size of T'abuList

6: yjbest, xjbest: indicates the best Assignment so far
7: while stopping criteria is not met

8:  firstImrpovAssign < getFirstImprovAssign()
9: if (firstImprovAssign is found and ¢ tabuList )
10: yteurrent, xicurrent < firstImrpovAssign
11:  else

12: firstNonImprovAssign <+

13: get First NonImrpovAssign()

14: if (firstNonImprovAssign ¢ tabuList )

15: y/teurrent, xjcurrent

16: firstNonImrpovAssign

17:  end if

18 if Y ajcurrent > > xlbest

19: ybest, wibest < yicurrent, xicurrent
20:  end if

21:  Add tabuMove to tabulList
22:  if tabulList is full

23: remove first element added to tabulist
24:  end if
25: iter + +

26: end while

on the MEC nodes. We then assume that all the MEC nodes
support all types of applications, and hence, the number of
applications A is equal to 7" x M. Each of the applications
is assigned computing resources p, chosen randomly within
the range of [1.7 — 1.9]GH z. Furthermore, since some of the
generated loads might migrate to different MEC nodes other
than their home MEC nodes, we assume the network delay to
be generated between 1 and 2ms at random. Moreover, since
the loads could be replicated and offloaded to a subset of MEC
nodes satisfying the QoS requirements of its requested type,
we choose the size of the set .S; of the potential subsets that a
load could be assigned to, to be between 200 and 900 (unless
stated otherwise). All our numerical evaluations are averaged
over 5 sets. The WA-MIP and the WA-D are evaluated using
IBM ILOG CPLEX Optimization Studio v.12.8.

B. WA-MIP vs. WA-D vs. WA-Tabu

We first compare the performance of our proposed solutions;
WA-MIP, WA-D and WA-Tabu in terms of optimality (total
admitted load) and scalability (CPU run time). To do so, we
vary the network size by increasing the number of locations L,
the number of MEC nodes M and the number of applications
A. In fact, increasing the number of locations in the network
implies increasing the aggregate generated load. Thus, more
MEC nodes subsets are needed to accommodate the added
load, and hence, increasing I (the size of S;) as the size of
the network increases for both WA-D and WA-Tabu. Further,
we consider that the applications are of T = 4 different types

belonging to smart grid industry vertical with §; = 20ms and
¢ = 99.999%. The evaluation results are presented in Table
1.

Instance Execution Time (sec) Admitted Load (%)

<L, M, T, A, I> WA-MIP WA-D WA-Tabu | WA-MIP | WA-D | WA-Tabu

<5, 5, 4, 20, 10> 0.025 0.020 0.017 100% 100% 100%

<8, 8, 4, 32, 50> 0.99 0.36 0.047 100% 100% 100%
<11, 11, 4, 44, 100> 2.1 1.31 0.13 100% 100% 100%
<14, 14, 4, 56, 200> 20 2.37 0.40 100% 100% 100%
<17, 17, 4, 68, 300> 288.4 15.2 0.87 100% 100% 100%
<20, 20, 4, 80, 500> | Out of Mem. 27.07 2.40 - 100% 100%
<23, 23, 4, 92, 700> - 20.1mins 4.61 100% 100%

TABLE III: WA-MIP vs. WA-D vs. WA-Tabu.

o Scalability: From Table III it is shown that as the size of
the network increases, the execution time (CPU run time)
increases exponentially for the WA-MIP. This behavior
continues until it fails to give a solution when the size of
the network is L = M =20, T'=4 and A = 80. On the
other hand, WA-D proved to be more scalable compared
to the WA-MIP. This can be seen from the execution time
of the WA-D where it increases exponentially as the size
of the network increases, but at a slower rate compared
to the WA-MIP. It can be observed that the WA-D gave a
solution when the network size was L = M =23, T =
4 and A = 92, but the run time jumped to 20.1mins.
Alternatively, the WA-Tabu proved to be the most scalable
as its execution time increases linearly as the size of the
network increases.

« Optimality: As can be seen from Table III, the algorithm
WA-MIP was able to accept all the load up to the network
size L=M =17, T = 4 and A = 68. It failed however,
to give a solution for the last two instances. On the other
hand, the algorithms WA-D and WA-Tabu were able to
admit all the generated load which yields to an optimality
gap of 0% in the considered instances where I was large
enough to accommodate all the generated workload. In
fact, varying the size of S; which is denoted by I, has
a significant impact on the admission rate and CPU run
time of both WA-D and WA-Tabu. We further illustrate
the impact of varying the parameter I on the performance
of WA-D and WA-Tabu in terms of admission rate and
run time in VII-C.

C. WA-D vs. WA-Tabu

In the previous section, we showed that WA-MIP is not
scalable. Further, we showed that WA-D is more scalable than
WA-MIP, and WA-Tabu algorithm is the most scalable for the
chosen values of I in Table III. In this section, we further
evaluate the performance of the WA-D and WA-Tabu. We thus
select the instance from Table III with the network size L =
M =17, T = 4 and A = 68 to investigate the performance
under varying the size of S;. We vary the size of S; between
(5 — 300). Our evaluation is in terms of execution time and
total admitted load. The results are shown in Figures 3 and 4.

From Figure 3, we observe that for small values of I (I =
5, I = 20) that represent the size of S;, WA-D fails to give
a feasible solution after running for a couple of hours as the
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Fig. 3: Admitted load under varying size of S;

LAWA-MIP was hard to solve. While on the other hand, WA-
Tabu admits 90.9% and 98.5% of the load for I = 5 and
I = 20 respectively. Further, as the size of I increases, the
admission rate increases for both WA-D and WA-Tabu. This
is explained by the fact that increasing the size of S; means
increasing the number of potential subsets of MEC nodes that
the generated loads could be assigned to, and hence, admitting
more load. Moreover, for I = 80, WA-D performed slightly
better than the WA-Tabu in terms of the total admitted load
with a difference less than 1%. In addition, for I > 80, both
algorithms admit 100% of the total generated load.
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Fig. 4: Execution time under varying size of S

Moving to Figure 4, it can be observed that the CPU
run time for WA-D decreases dramatically as the size of S
increases. This is due to the fact that increasing I makes
it easier for the WA-D to find a solution as more potential
candidates (subsets) become available to it, and hence, the
lower the execution time. More interestingly, the CPU run time
for WA-Tabu algorithm increases slightly as I increases up to
I = 80 where it starts decreasing until I is equal to 140,
then it starts increasing again. The first increasing behavior
is because WA-Tabu iterates over the potential subsets to
construct the initial solution and find neighboring solutions.
Hence, increasing the size of I would increase the run time.
When the size of I exceeds 80, the initial solution of the WA-
Tabu gives a 100% admitted load, and hence, the algorithm

terminates before iterating over the subsets in S; to improve
the initial solution as the stopping criterion is met. Finally,
the execution time hardly increases for / > 140 as the WA-
Tabu would only iterate over the subsets to construct the initial
solution.

D. Performance evaluation of WA-Tabu

1) Varying the workloads for different industry verticals and
its impact on the admission rate: We vary the workloads and
study the impact on the admission rate for different indus-
try verticals with different requirements. Thus, we increase
the generated workload and choose the values of A! to be
{100, 200, 300} requests/sec. The results are presented in
Figure 5. It can be seen from the figure that for each industry
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Fig. 5: Admission rate under varying workloads for different
industry verticals

vertical, as the generated workload per location [ per IoT
service type t increases, the admission rate decreases. This is
due to the fact that as ! increases, more load is requesting to
be processed by the same available resources a € A, which are
not sufficient to accommodate the newly generated load with
the given QoS requirements. Thus, this results in admitting less
load. Moreover, for the same value of )\f, the admitted load
increases as the latency and reliability requirements become
less strict. For instance, for )\f = 200, the total admitted
load for the industry vertical factory automation with the
QoS requirements (§; = 10ms, ry = 99.999%) is 89.56%.
While on the other hand, the admitted load for the smart
grid industry vertical with the QoS requirements (§; = 20ms,
ry = 99.999%) increased to 92.44%. The admission rate
keeps increasing to reach 100% for the industry vertical
process automation with the least strict QoS requirements
(6 = 100ms, ¢ = 99.9%).

2) Varying the network delay for ITS industry vertical and
its impact on the admission rate: We evaluate the impact
of increasing the network delay on the admission rate for
the intelligent transportation systems (ITS) industry vertical
with 0; = 30ms latency requirement. We thus vary the
network delay between 6 and 16ms. The results are depicted in
Figure 6. It can be observed from the figure that as the network
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Fig. 6: Admission rate under varying the network delay

delay increases, the admission rate decreases. For instance, the
total admitted load decreased by almost 17% when the network
delay went from 12ms to 14ms. This behavior is due to the
fact that increasing the network delay leads to a more limited
system delay at the MEC nodes to process the requests within
the deadline (30ms). Further, for the network delay 16ms, no
load was admitted as no system delay remained to process the
workload within the maximum allowable response time.

3) Varying the required reliability for different response
times and its impact on the admission rate: We consider the
reliability requirements for different IoT industry verticals and
overlook their latency requirements. We then study the impact
of varying the required reliability (r;) on the admission rate
for two different deadlines, 10ms and 100ms. Our results
depicted in Figure 7 show that for a specific maximum al-
lowable response time (J;), as the required reliability becomes
more strict, the admission rate decreases. In fact, increasing
the reliability requirements is coupled with replicating the
workload to more MEC nodes, which leads to an increase
in the queuing delay at the MEC nodes. Hence, the available
resources (applications) would not be sufficient to completely
process the workload. For instance, for §; = 10ms, the
admission rate decreased from 98.9% to 85.9% when the
required reliability went from 99.9% to a more strict value
of 99.9999%. Moreover, it can be seen that for a less strict
deadline (100ms), more system delay at the MEC nodes
remains to process the workload, and hence, the admission
rate is higher than that of 10ms.
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Fig. 7: Admission rate under varying the required reliability

4) RACS-heuristic vs. random candidate selection: As part
of our evaluation, we explore different strategies for the se-

lection of the subsets composing S;. Particularly, as discussed
in section V-A, we use the RACS heuristic as our selection
methodology to select the subsets based on minimizing the
achieved reliability with respect to the reliability required,
and the used resources (number of used MEC nodes). Al-
ternatively, we devise another selection strategy that randomly
selects the subsets. We evaluate the performance of the WA-
Tabu algorithm for different industry verticals under both
strategies in terms of admission rate and resource utilization.
The results are shown in Figures 8 and 9.

Admitted Load vs. Industry Vertical

120 ERACS Heuristic | Smart Tele Process
Factory [Jrandom Selection Grids Surgery Automation
Automation 99.7% 99.9% 100% 100% 100%

100~ 65 o504 95.2% 97.95% 8

8 sor 1
e}
©
o
i}

S 60 1
L
£
e}

< 40F 1

20 1

(10, 99.999) (20, 99.999) (50, 99.99) (100, 99.9)
Industry Vertical (6t (ms),rt (%))
Fig. 8: Admission rate for different subsets selection strategies

Resource Utilization vs. Industry Vertical

120 T T
llRACS Heuristic | Smart Tele Process
Factory l:lRandom Selection | Grids Surgery Automation
Automation 100% 100% 100% 100%
100 [
88%

g 84%
- 80f 76% i
o
T
N
5 60 8
©
=4
>
Q 40- 4
41
24

201 g

(10, 99.999) (20, 99.999) (50, 99.99) (100, 99.9)

Industry Vertical (6t (ms),r! (%))

Fig. 9: Resource utilization for different subsets selection
strategies

From Figure 8, it is observed that for the same selection
strategy, the admission rate increases as the QoS requirements
become less strict from one industry vertical to the other.
More interestingly, for a given industry vertical, the random
selection strategy gives a higher admission rate compared to
the RACS method, with an insignificant difference between 0
and 7%. While on the other hand, the difference in the resource
utilization is remarkable (between 12 and 24%) in favor of the
RACS heuristic as demonstrated in Figure 9. More precisely,
for the industry vertical factory automation with the the



most strict QoS requirements, the WA-Tabu with the random
selection strategy obtained around 7% more admitted load than
the RACS heuristic. However, it utilized 12% more resources
to admit the load. Moreover, for the industry vertical process
automation with the least stringent QoS requirements, the
resource utilization with the RACS heuristic was significantly
lower than the random selection with a difference of 24%,
while both yield the same admitted load (100%). In fact,
the random selection method provides more diverse subsets
composing S;, the fact that yields to having less number of
common MEC nodes among the subsets, and hence, resulting
in more admitted load. However, this diversity increases the
probability of using more resources, and hence yielding higher
resource utilization. One can note that there is a trade-off
between admitting more load and utilizing less resources.
Moreover, from the network operator perspective, using the
RACS strategy would allow saving energy, as he/she could
shut down the unused MEC nodes. Another scenario where
the RACS selection method would be more favorable is when
an additional load is generated in the network, the unused
resources could then be utilized to admit it.

5) Impact of varying the network size on the admitted
load and execution time: For further exploration, we vary
the size of the network by varying the number of locations,
MEC nodes, IoT applications and size of S;, and evaluate
its impact on the admitted load and execution time. As can
be seen from Figure (11), as the network size increases,
the execution time increases at a very slow rate. Further,
from Figure (10), one can note that the admitted load has
a decreasing trend. This decrease was not significant until
network size < 60, 60,240, 4,600 >. This is due to the fact
that the size of S; was fixed to 600 for the rest of the network
sizes. Hence, one can conclude that the admitted load heavily
depends on the size of S;. Further, the execution time would
increase by increasing the size of S;. Therefore, there is a
trade-off between the execution time and admitted load.

Network Size vs Admitted Load
T T T

Admitted Load (%)

Network Size (<L,M,A,T,I>)

Fig. 10: Admission rate under varying Network Size

VIII. CONCLUSION

In this paper, we studied the workload assignment problem
with latency and reliability constraints and evaluated different
approaches to solve it. We first mathematically formulated
the problem as a mixed integer program (WA-MIP) with
the objective of maximizing the total admitted load to the

Network Size vs Execution Time
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Execution Time (s)
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Fig. 11: Execution Time under varying Network Size

network while satisfying the QoS requirements of the sup-
ported IoT services. We then proved the non-scalability of the
WA-MIP in addition to the NP-Hardness of the considered
workload assignemnt problem. Therefore, we developed the
WA-D that decomposes the problem into two subproblems;
namely, RACS and LAWA-MIP. The decomposition approach
showed a significant improvement in scalability as compared
to WA-MIP. Although WA-D proved to be more scalable, it is
not scalable enough for very large networks. Thus, a meta-
heuristic approach (WA-Tabu) was developed to efficiently
solve the problem for larger networks with heterogeneous QoS
requirements. Through extensive simulations under various
system parameters, we evaluated the performance of our pro-
posed approach (WA-Tabu). Our proposed WA-Tabu aids the
network operators to efficiently use their available resources
to serve the maximum number of end users in an smart IoT
environment. Based on our findings, this work can be extended
to consider the deciding on the number of IoT applications to
be deployed as well as the amount of computing resources
allocated to them which would complicate the problem more.
Another future direction could be the dynamic workload
assignment with an online arrival of workloads.

APPENDIX
A. Linearization of Eq.11

Eq.11 is not linear and can be linearized by first rearranging
the terms as follows:

vteT
vieL

1—r > H (1—le9m)

meM

(28)

and then taking the natural logarithm of both sides, we get:

In(1 —7r;) >In ( H (1-— yl";ﬂm)> el 29
meM
Using the natural logarithm properties, Eq.29 becomes:
m(l—r)> Y In ((1 - yz’?-t?m)) VieL G0
meM

Now, Eq.30 can be linearized by observing the two possible
outcomes of its right hand side:

In(1—0,,) if yjp =1,

In(1 —y3.0m) =
n(1 -y ) {O if 47 = 0.



Hence, the right hand side of Eq.30 could be rewritten as in

Eq.31.
> wir(n(l — ) (31
meM
Thus, Eq.11 can then be replaced by Eq.32.
In(1—r)> > ypn((1-06n)) UL (32

meM

B. Linearization of Eq.16 and Eq.24

Equations (16) and (24) are not linear and can be linearized
by rewriting them as follows:
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Eq.35 is nonlinear and can be linearized by declaring two
new decision variables S}, € {0,1} and v}, € [0, 1] such
that:
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Eq.35 can then be replaced by the following equations:
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C. Linearization of Eq.14

Eq.14 is nonlinear and can be linearized by replacing it by
Eq.39, 40, 41, 42 and 47.

t
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