Lebanese American University Repository (LAUR)

Publication metadata:

Title: Breathing regulation and blood gas homeostasis after near complete lesions of the retrotrapezoid nucleus in adult rats

Author(s): Souza, George M.P.; Kanbar, Roy; Stornetta, Daniel S.; Abbott, Stephen B.G.; Stornetta, Ruth L.; Guyenet, Patrice G.

Journal: The Journal of physiology

DOI/Link: https://doi.org/10.1113/JP275866

How to cite this post-print from LAUR:

C 2018

This Open Access post-print is licensed under a Creative Commons Attribution-Non Commercial-No Derivatives (CC-BY-NC-ND 4.0)

This paper is posted at LAU Repository
For more information, please contact: archives@lau.edu.lb
Breathing regulation and blood gas homeostasis after near complete lesions of the retrotrapezoid nucleus in adult rats

George M.P.R. Souza1*, Roy Kanbar2*, Daniel S. Stornetta1, Stephen B.G. Abbott1, Ruth L. Stornetta1 and Patrice G. Guyenet1

1 Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
2 Department of Pharmaceutical Sciences, Lebanese American University, Beyrouth, Lebanon
* co-first authors

Abbreviated title: RTN, breathing and PCO₂ homeostasis

George Souza received a PhD in Physiology from the University of Sao Paulo, Brazil (2017). Currently, he is a post-doctoral fellow in the University of Virginia (UVA). He has been and still working on central control of breathing and blood pressure with focus on the role of specific brainstem neurons involved in these functions.

Indexing terms: central respiratory chemoreceptors, carotid bodies, breathing, breathing and sleep

Address correspondence to:
Patrice G. Guyenet, PhD
University of Virginia Health System
P.O. Box 800735, 1300 Jefferson Park Avenue
Charlottesville, VA 22908-0735.
Tel: (434) 924-5849; Fax: (434) 982-3878; E-mail: pgg@virginia.edu

This is an Accepted Article that has been peer-reviewed and approved for publication in the The Journal of Physiology, but has yet to undergo copy-editing and proof correction. Please cite this article as an 'Accepted Article'; doi: 10.1113/JP275866.

This article is protected by copyright. All rights reserved.
ABSTRACT

The retrotrapezoid nucleus (RTN) is one of several CNS nuclei that contribute, in various capacities (e.g. CO₂ detection, neuronal modulation) to the central respiratory chemoreflex (CRC). Here we test how important the RTN is to PCO₂ homeostasis and breathing during sleep or wake. RTN Nmb positive neurons were killed with targeted microinjections of substance-P-saporin conjugate in adult rats. Under normoxia, rats with large RTN lesions (92 ± 4 % cell loss) had normal blood pressure (BP) and arterial pH but were hypoxic (-8 mmHg PaO₂) and hypercapnic (+10 mmHg PaCO₂). In resting conditions, minute-volume (Vₑ) was normal but breathing frequency (fᵣ) was elevated and tidal volume (Vₜ) reduced. Resting O₂ consumption and CO₂ production were normal. The hypercapnic ventilatory reflex in 65% FiO₂ had an inverse exponential relationship with the number of surviving RTN neurons and was decreased by up to 92%. The hypoxic ventilatory reflex (HVR; FiO₂ 21-10%) persisted after RTN lesions, hypoxia-induced sighing was normal and hypoxia-induced hypotension reduced. In rats with RTN lesions, breathing was lowest during slow-wave sleep (SWS), especially under hyperoxia, but apneas and sleep-disordered breathing were not observed.

In conclusion, near complete RTN destruction in rats virtually eliminates the CRC but HVR persists and sighing and the state-dependence of breathing are unchanged. Under normoxia, RTN lesions cause no change in Vₑ but alveolar ventilation is reduced by at least 21%, probably because of increased physiological dead volume. RTN lesions do not cause sleep apnea during SWS, even under hyperoxia.
KEY POINTS SUMMARY

- Background: the retrotrapezoid nucleus (RTN) drives breathing proportionally to brain PCO$_2$ but its role during various states of vigilance needed clarification.
- New result: Under normoxia, RTN lesions increase the arterial PCO$_2$ set-point, lower the PO$_2$ set-point and reduce alveolar ventilation relative to CO$_2$ production. Tidal volume is reduced and breathing frequency increased to a comparable degree during wake, slow-wave sleep and REM sleep. RTN lesions do not produce apneas or disordered breathing during sleep.
- New result: RTN lesions in rats virtually eliminate the central respiratory chemoreflex (CRC) while preserving the cardiorespiratory responses to hypoxia; the relationship between CRC and number of surviving RTN Nmb neurons is an inverse exponential.
- Conclusions: the CRC does not function without the RTN. In the quasi-complete absence of the RTN and CRC, alveolar ventilation is reduced despite an increased drive to breathe from the carotid bodies.

INTRODUCTION

Arterial PCO$_2$ homeostasis requires continual breathing adjustments via feedback from the carotid bodies (peripheral chemoreceptors) and central chemoreceptors (Kumar & Prabhakar, 2012; Nattie, 2012). Many CNS nuclei contribute to the breathing stimulation elicited by a rise in CNS PCO$_2$ (central respiratory chemoreflex, CRC), including the retrotrapezoid nucleus (RTN) and subsets of serotoninergic, catecholaminergic and orexinergic neurons (Gargaglioni et al., 2010; Li & Nattie, 2010; Ray et al., 2011; Nattie, 2012; Brust et al., 2001).
al., 2014; Teran et al., 2014; Guyenet et al., 2017). The contribution of these neurons to the CRC is often behavior and state-dependent (e.g. orexin) and relies, in variable and unknown proportion, on their ability to directly respond to local changes in brain PCO$_2$ or to facilitate the ventilatory response elicited by CO$_2$-activated neurons.

RTN neurons appear to play a pivotal integrative role in the CRC. These glutamatergic neurons innervate selectively the brainstem respiratory centers, encode local brain PCO$_2$, drive the respiratory network in proportion to arterial blood acidity and are strongly activated by serotonin, noradrenaline and orexin. The importance of the RTN to the CRC is most strongly supported by the results of genetic manipulations in mice. For example, preventing RTN development or simultaneously knocking out two genes (Kcnk5 and Gpr4) required for the pH-sensitivity of RTN neurons in brain slices virtually eliminates the hypercapnic ventilatory reflex (HCVR) (Gestreau et al., 2010; Ramanantsoa et al., 2011; Kumar et al., 2015; Ruffault et al., 2015; Guyenet et al., 2016). This genetic evidence has certain limitations. Disrupting RTN formation during embryogenesis could have cascading effects on the development of other parts of the respiratory pattern generator. Kcnk5 and Gpr4 are prominently expressed by the kidneys, a key organ for acid-base control, and the CNS expression of Kcnk5 and Gpr4 is neither restricted to the RTN (Kcnk5) nor to neurons (Gpr4) (Mahadevan et al., 1995; Reyes et al., 1998; Gestreau et al., 2010; Dong et al., 2017). Finally, the HCVR of Phox2b27ala; Egr-2cre mice, in which the RTN fails to develop, recovers in adulthood to approximately 40% of control (Ramanantsoa et al., 2011).

The importance of the RTN has also been tested by lesions of this nucleus with a saporin conjugate ([Sar9,Met(O$_2$)$_{11}$]-substance P, SSP-SAP), that destroys substance P receptor- (Tacr-) expressing neurons (Nattie & Li, 2002a; Takakura et al., 2008; 2014; Shi et al., 2016; 2017). In adult unanesthetized rats, this procedure only causes a modest and
transient reduction of the HCVR (Nattie & Li, 2002a; Takakura et al., 2014), however this reflex is reduced by around 60% if the carotid bodies are simultaneously denervated (Takakura et al., 2014). That 40% of the HCVR persists after RTN lesions in carotid body-denervated animals can be interpreted in several ways. First, the RTN may not be uniquely important to the CRC, as proposed by several investigators (Nattie, 2012; Teran et al., 2014). Second, the survival of a very small fraction of RTN neurons may be sufficient to preserve a large portion of the CRC. Indeed, the difficulty to identify the key neurons and to gauge the extent of their destruction remains the main limitation of such lesion studies. In the case of the RTN, early studies were unable to quantify the degree of cell loss due to a lack of cell specific markers (Nattie & Li, 2002a), whereas more recent studies assessed cell loss using immunohistochemical staining for Phox2b, a validated but not completely selective marker of the CO2-responsive neurons (Stornetta et al., 2006; Shi et al., 2017). And finally, combined elimination of the RTN and the carotid bodies produces severe and sustained hypoventilation (Takakura et al., 2014) which presumably raises resting arterial and brain PCO2 well beyond the physiological range; the residual 40% HCVR observed in these animals could result from wide-spread, potentially non-selective, excitatory effects of CNS acidosis.

In the present study we assessed the importance of the RTN to PCO2 homeostasis and the ventilatory reflexes of unanesthetized adult rats using unrestrained whole-body plethysmography, while measuring arterial blood gases, EEG, and blood pressure. We used SSP-SAP to destroy NK1R-expressing neurons in the RTN. In contrast to previous studies, the lesion was quantified using Nmb mRNA, which is a more precise marker of RTN neurons in adult rodents (Li et al., 2016; Shi et al., 2017). We tested the integrity of the cardiovascular and respiratory components of the peripheral chemoreflex and evaluated the contribution of the carotid bodies to the HCVR using hyperoxia rather than denervation to avoid collateral damage to baroreceptors, as well as the effects of severe chronic hypoventilation and network
remodeling. Finally, we examined the rats during both sleep and wake to find out whether RTN lesions cause sleep-disordered breathing.

MATERIALS AND METHODS

Ethical Approval

We used 44 adult male Sprague-Dawley rats (300-400g; Taconic, Germantown, NY, USA). All the experimental procedures were in accordance with National Institutes of Health’s Guide for Care and Use of Laboratory Animals and were approved by the University of Virginia Animal Care and Use Committee. The study complied with the ethical principles of The Journal of Physiology, and the experiments complied with the journal’s animals ethics principles and regulation checklist (Grundy, 2015). Animals were housed under a standard artificial 12h light/dark cycle with water and food provided ad libitum.

Toxin injection and electrode implantation

To kill RTN neurons we injected a conjugate of saporin ([Sar⁹,Met(O₂)₁¹]-substance P (SP-SAP; Advanced Targeting Systems, San Diego, CA, USA) which preferentially destroys neurons that express substance P receptors (Wiley & Lappi, 1999; Nattie & Li, 2002a; Takakura et al., 2008). Injections were made bilaterally under electrophysiological guidance as described previously (Takakura et al., 2008). Briefly, rats were anesthetized with a mixture of ketamine (75 mg·kg⁻¹) and xylazine (5 mg·kg⁻¹) and acepromazine (1 mg·kg⁻¹) administered i.m. The adequacy of the anesthesia was judged by the lack of reflex in response to a firm tail pinch. Additional anesthetic was administered during the surgery if necessary (25% of the original dose, i.m.). All surgical procedures were conducted under aseptic conditions.
conditions. Body temperature was kept close to 37°C with a servo-controlled heating pad. A small incision was made in both cheeks to reveal the mandibular branch of the facial nerve. The rat was placed in a stereotaxic apparatus (David Kopf Instruments, San Diego, CA, USA), with the bite bar set at 3.5 mm below the interaural line for a flat skull. SSP-SAP was loaded into glass micropipettes (25 µm tip, external diameter) and the location of the electrode tip relative to the facial motor nucleus was identified by recording antidromic field potentials elicited by facial nerve stimulation (Takakura et al., 2008). A total of 6 microinjections (120 nl/injection; 3 rostrocaudally aligned injections per side) were made 100-200 µm below the lower edge of the facial motor nucleus 2 mm lateral to the midline. Experimental rats received either 0.6 ng, 1.2 ng, or 2.4 ng of SSP-SAP per injection. Control rats received injections of pH 7.35 phosphate buffered saline rather than unconjugated saporin because the exact mechanism by which RTN neurons were damaged was immaterial but we wished the surgical controls to have as little RTN damage as possible. The microinjections were immediately followed by electrode implantation. For EEG recording, 3 stainless screws were inserted extradurally as described previously (Basting et al., 2015). Two additional wires were implanted in the superficial dorsal neck muscle to record the EMG. The wires were connected to pins (A-M System, Sequim, WA, USA) that were inserted in a plastic headstage (A-M System, Sequim, WA, USA). The headstage was fixed to the skull using a two part epoxy (Loctite, Westlake, OH, USA). After the surgery, an antibiotic (Ampicillin, 125 mg·kg⁻¹, i.p.) and an analgesic (Ketoprofen, 3-5 mg·kg⁻¹, subcutaneously) was administered. These drugs were re-administered 24 hrs later and the rats were monitored daily for the next three days. The animals were left to recover for at least 3 weeks before the next stage of the experiment.
Blood pressure and arterial blood gases measurements

Rats were anesthetized with isoflurane (2.5% via nose cone). Isoflurane was administered in room air because rats with RTN lesions stopped breathing if given this anesthetic in pure oxygen. A polyethylene catheter (P-10 connected to P-50, Clay Adams, Parssipany, NJ, USA) was introduced into a femoral artery through a small skin incision and pushed towards the abdominal aorta. The arterial catheter was then tunneled under the skin and the tip was exteriorized in the dorsal aspect of the neck. Following surgery, the analgesic ketoprofen (3-5 mg·kg⁻¹, s.c.) and the antibiotic ampicillin (125 mg·kg⁻¹, i.p.) were administered. Rats were allowed to recover overnight. BP recording and blood gas sampling were done the next day. Arterial blood gases, plasma bicarbonate and arterial pH were measured using a handheld iStat configured with CG8+ cartridges (Abbott Instruments, Lake Bluff, Illinois, USA). For BP recording, the arterial catheter was connected to a pressure transducer. Following amplification, the signal was digitized at 1 kHz.

Physiological experiments in freely behaving rats

Physiological experiments were conducted three to four weeks after bilateral injection of SSP-SAP or saline in two stages. The effects of sleep and hyperoxia on breathing (Figs. 9, 10 except panel D, 11 and 12) were studied before arterial catheter implantation to avoid the disruptive effect of postsurgical stress. The rest of the experiments (cardiorespiratory reflexes, blood gases) were performed after catheter implantation. The rats were placed in a plethysmographic chamber (5L, EMKA Technologies, Falls Church, VA, USA) on two consecutive days prior to the experiment to habituate them to these surroundings. On the day of the recordings, rats were briefly anesthetized with isoflurane (2.0 % in room air) to connect the head-set EEG/EMG electrodes to the amplifier and, if the experiment required it, the arterial catheter was connected to the pressure transducer. The rats were then placed in the
plethysmographic chamber. Recordings were initiated at least one hour later, when the animals were quietly awake or sleeping. The plethysmography chamber was continuously perfused with room air or, as required by the protocols, with various mixtures of O₂, N₂ and CO₂ (total flow: 1.5 l·min⁻¹). The gas mixtures were produced by flow-mass controllers operated by FlowVision software (Alicat Scientific, Inc., Tucson, AZ, USA). The ventilatory reflex was measured by exposing the rats to 3, 6, and 9% FiCO₂ on a background of hyperoxia (65% FiO₂) to reduce the contribution of the carotid bodies to the hypercapnic stimulus (protocol shown in Fig. 4A). Blood gases were measured three times: under normoxia, 2-3 minutes after administration of hyperoxia and a third time while the rats were exposed to 9% FiCO₂ (Fig. 4A, arrowheads). Respiratory frequency (f_R), tidal volume (V_T) and minute-volume (V_E) were measured at the time indicated by the arrows in Fig. 4A. Rats were either quietly resting and/or in slow-wave sleep when the data were acquired. Periods of REM sleep were excluded from the analysis because f_R and V_T are highly variable and the chemoreflexes drastically reduced during this sleep stage (Coote, 1982; Burke et al., 2015a).

Oxygen consumption (VO₂) and CO₂ production (VCO₂) were measured in metabolic chambers coupled with gas sensors (Oxymax Economy System, Columbus Instruments, OH, USA). Metabolic chambers were flushed with constant room air at 2 l·min⁻¹. After one hour of acclimatization to the chambers, measurements were made automatically during three hours. Gas samples were analyzed every 10 minutes and average values of VO₂ and VCO₂ were expressed in ml·min·100g⁻¹.

Data acquisition and analysis of physiological variables

Data were acquired using Spike2 software (version 7.03, Cambridge Electronics Design, Cambridge, UK) as described previously. Briefly, raw plethysmography signals were

This article is protected by copyright. All rights reserved.
produced by a differential pressure transducer connected to the chamber, amplified (x500, EMKA technologies, Falls Church, VA, USA) and digitized at 1 kHz. Respiratory frequency (f_R, in breath·min$^{-1}$) and tidal volume, V_T, were derived from the flow signal using Spike2, 7.03. Tidal volume (V_T, area under the curve of the inspiratory flow), was calibrated against the signal generated by injecting 5 ml of dry air into the chamber with a syringe and expressed as ml per 100g body weight. Minute-volume (V_E), the product of $f_R \times V_T$, was expressed in ml·min·100g$^{-1}$. Breathing variability was determined using the coefficient of variance (standard deviation divided by the mean of the breath-to-breath interval of 30 consecutive breaths). EEG and EMG signals were amplified (x1000, Harvard Apparatus, Holliston, MA, USA), bandpass filtered (EEG: 0.1-100 Hz, EMG: 100-3000 Hz) and digitized at 1 kHz. The state of vigilance of the rats was identified using conventional criteria. Non-REM sleep (slow wave sleep, SWS) was identified by the animal’s posture, the predominance of high amplitude delta oscillations in the EEG (0.5-4 Hz), the low level of neck EMG activity and a very regular breathing pattern. The quiet awake state was identified by reduced power and desynchronized EEG, tonic neck EMG and a regular breathing rate. REM sleep was characterized by stable theta oscillations on the EEG (6-8 Hz), neck muscle atonia and a highly variable breathing with increased average f_R and reduced average V_T.

Histology

After the experiments animals were deeply anesthetized and then perfused transcardially with 4% of paraformaldehyde. After the perfusion, brains were removed and postfixfixed in the same fixative for 12-16 hours at 4°C. Brains were sectioned and stored in cryoprotectant solution.

Multiplex in situ hybridization was performed using RNAScope (Advanced Cell Diagnostics, Hayward, CA) according to the manufacturer’s directions, briefly as follows.
Sections were briefly washed in sterile phosphate buffered saline, mounted on charged slides and dried overnight. After 2 rinses in sterile water, sections were incubated with Protease IV (ACD) for 30 minutes at 42°C. Sections were rinsed twice in sterile water and incubated in RNAscope catalog oligonucleotide probes for Nmb, Tyrosine Hydroxylase (Th) and Tryptophan hydroxylase (Tph) transcripts for 2 hours at 40°C. After incubation with probes, tissue was treated according to the manufacturer’s protocol (ACD). Slides were covered with Prolong Gold with DAPI Anti-fade mounting medium (Molecular Probes, Eugene, OR).

Cells were mapped and counted with a computer assisted stage controlled with the Neurolucida software (v. 11, MBF Bioscience, Colchester, VT) using a Zeiss AxioImager M2 after methods previously described (Stornetta et al. 2004). Digital photomicrographs using the same microscope were made with a Hamamatsu C11440 Orca-Flash 4.0LT digital camera. Filter settings for Atto 550, Alexa 488 or Atto 647 fluorophores were as follows: Alexa 488, excitation of 500 nm, emission of 535 nm; Atto 550, excitation of 545, emission of 605 nm; Atto 647, excitation of 640 nm, emission of 690 nm. Only cell profiles that included a nucleus were counted and/or mapped.

Statistics

For the statistical analysis we used GraphPad Prism (Version 7.03, La Jolla, CA, USA). Data were tested for normality using the D’Agostino and Pearson, Shapiro-Wilk or Kolmogorov-Smirnov’s test. Data sets which failed all three tests were analyzed using non-parametric statistics. For normally distributed data, we used 1-way or 2-way ANOVA, usually with repeated measures, followed by Bonferroni’s multiple comparisons test. The remainder of the data were analyzed using Kruskal-Wallis non-parametric test, followed by Dunn’s post hoc multiple comparisons test. Normally distributed data were expressed as
mean ± standard deviation (SD) and the rest as median ± 95% of confidence interval (CI). Differences were considered significant when P<0.05 but exact P values are reported. The relationship between the number of Nmb neurons and various physiological variables was tested with linear regression analysis followed by correlation analysis using Pearson’s test. The relationship between hypercapnic ventilatory reflex and Nmb cells was modeled using various mathematical functions; a one-phase inverse exponential function provided the best fit.

RESULTS

Histology

Saline or SP-SAP was injected bilaterally into the RTN under electrophysiological guidance (3 microinjections per side; 0.6, 1.2 or 2.4 ng of toxin per injection). RTN neurons were identified histologically by the presence of Nmb transcripts (Shi et al., 2017) (Fig. 1) and counted in a one-in-six series of transverse sections spanning the entire rostrocaudal extent of the nucleus. RTN Nmb cells were defined as those Nmb cells lying lateral to catecholamine cells (Th positive) or those under the facial motor nucleus in more rostral sections without Th cells present. The Nmb cell loss increased with the dose of toxin (Fig. 2A).

For physiological analysis, we regrouped the rats into three cohorts based on the number of Nmb RTN neurons identified post-mortem (Fig. 2B): saline-injected control rats (n=12; 359 ± 69 RTN Nmb neurons counted; range 273–478), mild lesion (ML) rats (n=12, 152 ± 92 RTN Nmb neurons remaining; range 78–374) and large-lesion (LL) rats (n=11, 29 ± 14 RTN Nmb neurons remaining; range 5–55). The mild lesion group included the 10 rats that
had received the lowest dosage of toxin plus two rats, identified in Fig. 2A, that had a relatively small loss of *Nmb* neurons despite having received a higher toxin dose.

The number of serotonergic neurons located in the parapyramidal region and raphe magnus as well as the *Nmb* cells medial to the RTN (“midline” *Nmb*) were analyzed in a subset of 4 control and 4 LL rats (Fig. 1). No difference between control and lesion was noted between either of these sets of neurons (Figs. 1, 2). C1 adrenergic neurons were also counted from the same intact and RTN-lesion rats (Figs. 1, 2). Within the region examined, C1 cell numbers were significantly reduced by SSP-SAP, as noted in a prior study (Takakura *et al.*, 2008).

Baseline ventilatory parameters in normoxia

Resting respiratory frequency (*fR*) was significantly elevated and tidal volume (*V_T*) significantly reduced in the LL group relative to control rats but *V_E* was unchanged (Table 1). In the ML group, *fR*, *V_T* and *V_E* were similar to control rats. Resting mean arterial pressure was the same in the three rat cohorts (Table 1). Blood gases were not significantly different from control (n=11) in the ML (n=12) cohort (Fig. 3A-D). By contrast, in the LL (n=10) cohort, every parameter was significantly different from both control and ML rats (Fig. 3A-D). Specifically, PaO₂ was lower in the LL group than in controls (71.2 ± 6 vs. 79.6 ± 6 mmHg, *P*=0.0039), PaCO₂ was higher (48.5 ± 7 vs. 38.1 ± 3 mmHg, *P*<0.0001), the bicarbonate concentration was higher (34.6 ± 5 vs. 28.6 ± 2, *P*=0.0033) and arterial pH very slightly but yet significantly lower (7.46 ± 0.02 vs. 7.48 ± 0.01, *P*=0.0307). PaO₂ and PaCO₂
were both highly correlated with the number of surviving RTN Nmb neurons (Fig. 3E, F), the first positively, the second negatively.

In summary, under normoxia, breathing parameters, blood gases and BP were normal in the rats with medium-sized lesions. The large lesion cohort also had a normal V_E but only because the reduction in V_T was offset by an increase in f_R. These rats were hypoxic (-8.4 mmHg difference relative to controls) and notably hypercapnic (+10.4 mmHg difference relative to controls) but their BP was normal.

Hypercapnic ventilatory reflex (HCVR) under hyperoxia

Representative examples of plethysmographic recordings from a control rat and one rat each selected from the mild or large lesion cohort are shown in Fig. 4B. At rest under normoxic conditions, and as described in Table 1, breathing frequency was higher in the LL group, V_T lower and V_E slightly but non-significantly reduced (Fig. 4C). Hyperoxia alone reduced f_R and V_E to a greater extent in the LL group than in the other two cohorts. Ventilation during exposure to CO$_2$ (FiO$_2$ maintained at 65% throughout) was much lower in the LL group relative to control or ML rats (Fig. 4C). The difference was highly significant for all three parameters (f_R, V_T, V_E) and at all levels of FiCO$_2$ (Fig. 4C). V_T and V_E were at control levels in the ML cohort under all gas environments but f_R was slightly reduced during hypercapnia. To quantify more precisely the HCVR we analyzed the change in f_R, V_T, V_E (Δf_R, ΔV_T, ΔV_E) elicited by raising FiCO$_2$ relative to the baseline values observed before CO$_2$ addition (65/0 point in Fig. 4C) (Fig. 5). ΔV_E elicited by 9% FiCO$_2$ in the LL cohort was reduced by 70.2 ± 14.6 % relative to the control rats (Fig. 5).
Hyperoxia alone caused a much greater rise in PaCO$_2$ in the LL cohort (n=8) than in the control (n=7) rats (to 65.3 ± 9 vs. 47.1 ± 3 mmHg, P=0.0003; Fig. 5D); PaCO$_2$ also rose to a much higher level in the LL cohort than in the control rats after exposure to 9% FiCO$_2$ (to 102.1 ± 15 vs. 76.8 ± 3, P<0.0001; Fig. 5D). When expressed as ΔV$_E$ / ΔPaCO$_2$ the HCVR was reduced by 72 ± 12 % in LL relative to the control rats.

The relationship between ΔV$_E$ and the number of intact RTN Nmb neurons was best described by an inverse exponential function at all three levels of FiCO$_2$ (Fig. 5E). The ΔV$_E$ of the two rats with the lowest ventilatory reflex was reduced by 91.8 ± 2 % relative to the average of the intact rats. These animals had only 5 and 17 Nmb neurons (3 ± 2 % of control values on average). Blood pressure was the same in all three rat groups, regardless of the FiCO$_2$ (Fig. 6A, B).

Oxygen consumption (VO$_2$) and CO$_2$ production (VCO$_2$) were measured in a separate cohort of 4 bilaterally lesioned rats (2.4 ng SSP-SAP) and 5 control rats. The hypercapnic ventilatory reflex of the lesioned rats was reduced to the same degree as the above described LL cohort but VO$_2$ and VCO$_2$ were not statistically different from the control rats (Table 2).

Cardiorespiratory response to poikilocapnic hypoxia is preserved after RTN lesions

Carotid body stimulation by hypoxia stimulates breathing; it also activates sympathetic tone which helps maintain BP constant. The hypoxic reflexes (ventilation and BP) were measured by exposing the rats to 15, 12 and 10% FiO$_2$ without supplemental CO$_2$ as summarized in Fig. 6A. Blood gases were measured twice: under normoxia and towards the
end of the period of exposure to 10% FiO$_2$ (Fig. 7A, arrowheads). Breathing frequency (f_R), V_T and V_E were measured at the times indicated by the arrows in Fig. 7A. Representative examples of plethysmographic recordings from a control rat and one rat each selected from the mild or large-lesion cohort are shown in Fig. 7B. The changes in breathing parameters (Δf_R, ΔV_T and ΔV_E) relative to the normoxia baseline are shown in Fig. 7C. Δf_R was reduced in LL compared to control (values at FiO$_2=10\%$, 42.8 ± 25 vs. 69.9 ± 22 breaths·min$^{-1}$, $P=0.0096$) but ΔV_T was larger (0.143 ± 0.14 vs. -0.065 ± 0.06 ml·100g$^{-1}$, $P<0.0001$). As a result ΔV_E was not significantly different between LL and control groups (34.1 ± 6 vs. 27.2 ± 8 ml·min·100g$^{-1}$, $P=0.4382$). Finally, the relationship between ΔV_E elicited by 10% FiO$_2$ and the number of surviving neurons did not reach statistical significance ($P=0.06$; Fig. 7E).

At rest under normoxia, BP and HR were the same in the three rat cohorts (Fig. 6, Table 1). The BP of intact rats decreased slightly and monotonically with increasing levels of hypoxia whereas it remained stable in the rats with large lesions of RTN neurons (Fig. 6C). The difference was highly significant. Heart rate tended to be slightly higher in the control rats (Fig. 6D); this difference could be baroreflex-related since the control rats tended to have lower BP. The blood gases of the three rat cohorts under hypoxia (FiO$_2=10\%$) are shown in Table 3. No significant difference in PaCO$_2$ or PaO$_2$ were observed during hypoxia between the three groups. Thus RTN lesions had little impact on blood gas homeostasis under hypoxic conditions, unlike under hypercapnia.

Hypoxia-induced sighing after RTN lesions

Hypoxia also produces a prominent increase in the frequency of sighs (augmented breaths)(Ramirez, 2014). We examined the effect of RTN lesions on sighing because this
behavior has been recently attributed to the activity of Nmb-expressing neurons, possibly located in the RTN region (Li et al., 2016). A slight increase in sigh frequency was noted in the LL group both under normoxia and hyperoxia (Fig. 8). However, under hypoxia (15, 12 and 10% FiO$_2$) sigh frequency was essentially the same in all three rat groups except for a small reduction in the ML cohort under 10% FiO$_2$ (Fig. 8). The mean sigh frequency in normoxia, hyperoxia or hypoxia was about average in the LL group (Fig. 5). Sigh amplitude (i.e., V_T of sighs) was the same in all three groups of rats (LL: 1.87 ± 0.4; ML: 2.20 ± 0.3; Control: 1.94 ± 0.4 ml·100g$^{-1}$, 1-way ANOVA, $P=0.0647$).

Contribution of the carotid bodies to resting breathing is enhanced in rats with RTN lesions

To test the contribution of the carotid bodies to resting breathing, we subjected the rats to hyperoxia (65% FiO$_2$) according to the protocol shown in Fig. 9A. In intact unanesthetized mammals, hyperoxia produces a transient breathing reduction whose magnitude is used as an index of the contribution of the peripheral chemoreceptors to resting ventilation (Dejours, 1962). During longer term hyperoxia in Sprague-Dawley rats, breathing recovers to control levels, largely because RTN neurons are more active, presumably driven by an increase in local brain PCO$_2$ (Basting et al., 2015).

Hyperoxia (65% FiO$_2$) had no detectable effect on any breathing parameter and at any time point in control rats (Fig. 9 B, C). f_R was higher under normoxia in the LL group than in the other two groups and lower early during hyperoxia (Fig. 9 C, left panel). V_T was lower at all times in the LL group. V_E was considerably lower in the LL rats both early and later during hyperoxia. The effect of hyperoxia on breathing parameters were further analyzed by measuring the changes (Δf_R, ΔV_T and ΔV_E) relative to the normoxia baseline (Fig. 10). RTN lesions, mild or large had no effect on ΔV_T (Fig. 10 B). Δf_R and ΔV_E were significantly
larger in the LL group than in control rats, but the values did not differ between the ML and control groups. PaCO\(_2\) was significantly larger under normoxia in the LL group (see also Table 1).

The protocol was re-run after catheter implantation in a large subset of the rats (n=7 from each cohort) to examine the effects of hyperoxia on blood gases. After 20 min of hyperoxia, PaCO\(_2\) of the control and ML rats was identical and only mildly elevated relative to normoxia (control: from 39.2 ± 2 to 46.6 ± 3 mmHg, P=0.006; n=7; ML rats: from 38.6 ± 3 to 45.1 ± 9 mmHg, P=0.0174, n=7). In the LL rats PaCO\(_2\) (n=8) was already significantly higher than that of control rats under hypoxia, and rose to a much higher level still under hyperoxia (from 50.6 ± 5 to 74.4 ± 11 mmHg, P<0.0001, n=8; Fig. 10D). The higher increase in PaCO\(_2\) during hyperoxia in LL rats indicates that these rats presented a dramatic alveolar hypoventilation during hyperoxia compared to control. The early and sustained reduction in minute-ventilation (ΔVE) produced by hyperoxia was highly correlated with the loss of Nmb neurons (Fig. 10 E, F).

Sleep-related changes in breathing pattern are preserved after RTN lesions

RTN hypoplasia or outright developmental failure is suspected to occur in congenital central hypoventilation syndrome (CCHS), a disease caused by Phox2b mutations (Amiel et al., 2003; Amiel et al., 2009; Weese-Mayer et al., 2010). CCHS is characterized by severe hypoventilation or even complete apnea during slow-wave sleep while ventilation improves during REM sleep. We already know that, in intact rats, RTN activity is a major determinant of ventilation during slow-wave sleep whereas the contribution of this nucleus is much reduced during REM sleep (Burke et al., 2015a). The goal of this next series of experiments
was to test whether ventilation is depressed to a much greater degree during SWS than during REM sleep in animals with extensive RTN lesions.

REM sleep episodes were identified by a combination of posture, neck muscle atonia, theta (6-7Hz) cortical rhythm, and increased variability of breathing frequency and amplitude (Fig. 11A). Slow-wave sleep was identified by large amplitude low frequency EEG, low amplitude neck EMG and extreme breathing regularity, and periods of quiet waking by higher amplitude neck EMG but lack of movement, desynchronized EEG and regular breathing (Fig. 11). Episodes of REM and slow-wave sleep occurred in all groups of rats. We did not quantify the proportion of time spent in each state. \(f_R \), \(V_T \) and \(V_E \) were averaged during episodes of REM sleep (1-3 min per rat) and compared to values recorded during SWS or quiet waking (3-4 min per rat). A single numerical value representing the mean \(f_R \), \(V_T \) and \(V_E \) during each of the three states was generated per rat. The results were analyzed by 2-way ANOVA (factors: sleep stage and extent of lesions). There was a significant effect of both sleep stage and the extent of the RTN lesions on all breathing parameters but no interaction between the two factors (2-way RM ANOVA; Fig. 11). This result indicates that the effect of sleep stages on breathing parameters were preserved in rats with RTN lesions (i.e. during REM sleep \(f_R \) increased, \(V_T \) decrease and \(V_E \) remained the same relative to SWS) and \(V_T \) was reduced to approximately the same extent during wake, SWS and REM sleep.

We also examined whether rats with RTN lesions exhibited breathing instability during slow-wave sleep. Breathing variability was measured by the coefficient of variation (CV) of the breathing period. In intact rats, CV was lowest during slow wave sleep and highest during REM sleep, as expected (Fig. 12 D). RTN lesions had no effect on this pattern (2-way RM ANOVA; Fig. 12D). In sum, the hypothesis that RTN lesions would cause apneas or at least much more severe hypoventilation during SWS than during quiet waking or REM sleep was not supported by the experimental data.
Ventilation under hyperoxia and during slow-wave sleep

The preceding experiments were conducted in rats breathing room air. The results (vigilance state-independent effect of RTN lesions on breathing parameters) could mean that, in animals with RTN lesions, breathing is maintained by the carotid bodies to an equivalent degree during both waking and slow-wave sleep. To test this hypothesis we measured ventilation during slow-wave sleep and quiet waking in control (n=10) and rats with RTN lesions (LL group; n=11) given 65% FiO$_2$ to minimize the contribution of the carotid bodies. The data come from the hyperoxia experiments described above (Figs. 9 and 10) but we analyzed episodes of SWS and quiet waking separately. Because hyperoxia was only maintained for 20 min, episodes of REM sleep were not frequent enough to enable us to analyze breathing during this stage.

Under hyperoxia, V$_E$ was reduced to the same extent (~40%) in rats with RTN lesions during quiet waking (LL rats, 24.0 ± 4; control rats, 40.6 ± 8 ml·min·100g$^{-1}$, P<0.0001) and SWS (19.2 ± 4 vs. 33.7 ± 6 ml·min·100g$^{-1}$, P<0.0001). As under normoxia, there was a significant effect of both state of vigilance and RTN lesions on all ventilatory parameters but no interaction between these factors (2-way RM ANOVA; Fig. 12A-C). V$_E$ was definitely lowest in sleeping rats with RTN lesions breathing 65% FiO$_2$ than under any other conditions examined but apnea was still not observed. During hyperoxia, breathing variability was increased in rats with large RTN lesions compared to controls (Fig. 12E) although the difference reached statistical significance only during the awake state.
DISCUSSION

To date, this study is the most comprehensive description of the cardiorespiratory consequences of an almost complete destruction of RTN neurons in adult rodents. RTN lesions reduced the CRC by up to 92% and produced a degree of hypercapnia and hypoxia at rest that increased with the severity of the lesion. At rest, rats with a near-complete lesion of the RTN had a similar V_E to control rats because a reduction in V_T was offset by an increase in f_R. However, the combination of increased PaCO$_2$ and unchanged CO$_2$ production at rest in rats with RTN lesions indicates that alveolar ventilation was severely reduced compared to controls, likely due to increased physiological dead space. RTN lesions did not fully phenocopy the breathing deficits observed in congenital central hypoventilation syndrome. While the CRC was massively decreased, the other cardinal sign of the disease, sleep apnea, was not reproduced. The following discussion focuses on the differences between rats with an intact RTN and those with large lesions of this nucleus because intermediate size lesions had virtually no effect.

Histology

RTN Nmb neurons express neurokinin-1 receptors (tacr) (Shi et al., 2017), which presumably accounts for their vulnerability to SSP-SAP (Wiley & Lappi, 1999; Nattie & Li, 2002b). The toxin partially damaged the rostral-most C1 neurons, whose processes are intermingled with RTN neurons (Stornetta et al., 2006). However, the bulk of the C1 neurons reside caudal to RTN; these neurons seemed intact. The serotonergic neurons located within the parapyramidal region and the raphe (magnus and pallidus), some of which contribute to the hypercapnic ventilatory reflex (Brust et al., 2014; Hennessy et al., 2017), were unaffected as were the Phox2b-negative (non-RTN) Nmb neurons located in the ventromedial medulla.
(Shi et al., 2017). Damage to the very rostral portion of the ventral respiratory column (Bötzinger region) was not immediately apparent but could not be objectively evaluated with the present histological analysis. Although NK1R-rich regions of the respiratory column such as the preBötzinger complex innervate the RTN region (Tan et al., 2010), SSP-SAP is not known to destroy respiratory neurons in a retrograde manner (Takakura et al., 2008; 2014). The general region that we targeted also harbors neurons known as the parafacial expiratory oscillator (Huckstepp et al., 2015; 2016). This entity has not yet been identified histochemically and could conceivably be a subset of RTN neurons that regulate active expiration preferentially (Marina et al., 2010; Burke et al., 2015a).

In short, the toxin destroyed a very large percentage of RTN Nmb neurons while sparing nearby serotonergic, and Nmb neurons located in the ventromedial medulla. The rostral C1 catecholaminergic neurons were partially damaged. The parafacial expiratory oscillator is not identifiable yet; its fate could not be determined.

RTN lesions reduce alveolar ventilation at rest under normoxia despite a compensatory increase in carotid body drive to breathe

Arterial pH was minimally changed by RTN lesions, consistent with the well-established primacy of the kidneys for long-term pH control. Also as anticipated, an increase in plasma bicarbonate contributed to the restoration of arterial pH to its normal level. However, after near complete RTN lesions, PaCO₂ was notably elevated (48 vs. 38 mmHg) and PaO₂ reduced.
Based on the classic relationship between PaCO₂, VCO₂ and alveolar ventilation (Vₐ) (PaCO₂=k·VCO₂/Vₐ) and the fact that VCO₂ was unchanged, we conclude that large RTN lesions reduced alveolar ventilation by 21% on average. Such severe hypoventilation occurred at rest despite the fact that Vₑ was unchanged. After lesion, Vₑ was far more dependent on the carotid bodies in lesioned than intact rats given the much greater Vₑ reduction elicited by hyperoxia. Although, Vₑ was unchanged after RTN lesions, Vₜ was reduced and fₑ was increased. That Vₑ depended predominantly on fₑ after RTN lesions suggests that the primary cause of the alveolar hypoventilation could be an increase in the physiological dead space.

RTN lesions virtually eliminate the CRC

The HCVR measured under hyperoxia (hyperoxic HCVR) overestimates the contribution of central chemoreceptors because the carotid bodies can still be activated by hypercapnia (Pepper et al., 1995). This overestimation could be larger after RTN lesions because arterial PCO₂ rises higher than in intact rats when they breathe a CO₂-enriched mixture.

The fₑ and Vₜ components of the hyperoxic HCVR were both reduced by RTN lesions, consistent with prior evidence that these neurons regulate both variables (Abbott et al., 2011; Basting et al., 2015). The relationship between the hyperoxic HCVR and the number of surviving RTN Nmb neurons was an inverse exponential function. A 57.6 ± 26 % kill rate (ML rats) produced virtually no effect. The LL cohort had a 70.2 ± 16.6 % reduction of the hyperoxic HCVR and 8 ± 4 % of Nmb RTN neurons remaining. The two rats with the
most extreme RTN lesions (only 3 ± 2 % Nmb neurons left) had a 92 % reduced hyperoxic HCVR.

Based on these results, RTN neurons may mediate more than 92% of the CRC since some of the residual HCVR was likely driven by the carotid bodies. That only 10% of the hyperoxic HCVR would be mediated by the carotid bodies seems a priori to contradict prior observations (Rodman et al., 2001). However, the contribution of the carotid bodies to the HCVR is probably smaller in Sprague-Dawley rats than in dogs (Mouradian et al., 2012). In addition, a portion of the peripheral chemoreflex is normally mediated by the RTN, therefore this portion of the reflex would be eliminated after this nucleus is destroyed (Takakura et al., 2006).

The prenatal loss of RTN neurons by conditional expression of a mutated form of Phox2b (Phox2b^{27ala}) eliminates only 60% of the HCVR of adult mice (Ramanantsoa et al., 2011) but the HCVR was measured under normoxia and the 40% residual reflex could also have been largely mediated by the peripheral chemoreceptors. Indeed these authors showed that at least at P4, hyperoxia (100% O₂) produced considerable hypoventilation in these mutant mice. The hyperoxic HCVR of mice with combined Gpr4 and Task-2 genomic deletion, which eliminates the ability of RTN neurons to respond to acidification, is also 90% reduced. In short, RTN destruction or selective deletion of its ability to respond to acid virtually eliminates the CRC in rodents. These observations need to be reconciled with the large body of evidence which supports the existence of multiple additional central respiratory chemoreceptors, (locus coeruleus, serotonergic neurons, orexinergic neurons, nucleus solitary tract, ventral respiratory column, etc.). A tempting hypothesis is that serotonin, noradrenaline and orexin neurons regulate the CRC via their excitatory projections to the RTN (Mulkey et al., 2007; Lazarenko et al., 2011; Hawryluk et al., 2012; Brust et al., 2014; Oliveira et al.,
2016). These neurons could also amplify the effect of a given change in RTN neuron discharge by enhancing the excitability of the respiratory pattern generator (Viemari & Ramirez, 2006; Ptak et al., 2009). The previously proposed existence of chemoreceptors distributed throughout the ventral respiratory column and nucleus of the solitary tract (Solomon et al., 2000; Conrad et al., 2009) is more difficult to reconcile with the magnitude of the CRC reduction elicited by RTN lesions, unless one postulates that all these neurons also operate via the RTN. The view that these neurons are respiratory chemoreceptors relies on the observation that focal brain acidification in vivo activates breathing and/or that acidification depolarizes neurons and or astrocytes in slices (Gourine & Kasparov, 2011; Nattie, 2012). The possibility that these are non-specific actions of pH cannot be excluded.

RTN lesions have considerable functional selectivity; locomotion, posture, grooming, state-dependency of breathing, resting blood pressure and heart rate were not detectably altered. As discussed below, the hypoxic ventilatory response tended to be enhanced rather than decreased by RTN lesions. This functional selectivity does not signify nor presuppose that the lesions were totally selective for Nmb neurons. A huge percentage of Nmb cells need to be destroyed to produce a detectable loss of the physiological function governed by these neurons. The same principle likely applies to neurons located at the immediate periphery of the RTN; the loss of a small percentage is presumably of little physiological consequence. The C1 cells are a case in point as discussed below.

The cardiovascular and respiratory components of the peripheral chemoreflex are preserved or enhanced by RTN lesions.

The cardiorespiratory stimulation elicited by moderate and short-term hypoxia is caused by the activation of the carotid bodies (Kumar & Prabhakar, 2012). The persistence of
the hypoxic ventilatory reflex in toxin-treated rats suggest that the toxin did not damage the respiratory pattern generator or that the damage was slight.

The hypoxic ventilatory response was qualitatively altered by RTN lesions; specifically, the frequency response was attenuated and the tidal volume component enhanced. The f_R increase could have been reduced simply because this parameter has a finite dynamic range and it was already elevated under normoxia. Also, hypoxia inhibits the RTN via alkalosis (Basting et al., 2015) which normally opposes the direct breathing stimulation elicited by the RTN-independent effect of carotid body stimulation on the respiratory pattern generator (Guyenet et al., 2017). Such disfacilitation would not occur in the absence of RTN neurons and the full effect of the carotid bodies on tidal volume may therefore be revealed.

Resting BP was unaffected by the lesions, consistent with the minimal effects of the toxin on C1 cells and the raphe. C1 neurons are profoundly activated by carotid body stimulation (Sun & Reis, 1993) probably by second-order chemoreceptor neurons located in the nucleus of the solitary tract (Koshiya et al., 1993; Aicher et al., 1996; Dempsey et al., 2017). This activation increases sympathetic tone, which minimizes hypotension under hypoxic conditions (Burke et al., 2014; Wenker et al., 2017). Interestingly, BP was better maintained during hypoxia in rats with RTN lesions than in intact animals. The simplest explanation is the already evoked enhancement of the hypoxic reflex but there are others. The rostral bulbospinal C1 cells are also a convergence point of the peripheral and central components of the sympathetic chemoreflex (Sun & Reis, 1994; Moreira et al., 2006). RTN neurons could conceivably mediate the cardiovascular effects of a rise in CNS PCO$_2$ since they appear to innervate C1 neurons (Dempsey et al., 2017). As the RTN is silenced by hypoxia (Basting et al., 2015), the contribution of this nucleus to the discharge of the C1 cells should be reduced during hypoxia thereby lessening the ability of these neurons to preserve

This article is protected by copyright. All rights reserved.
BP homeostasis. In the absence of RTN neurons, the direct excitatory effect of the carotid bodies on the C1 cells should be unopposed by the loss of excitatory input from the RTN and BP should therefore be better maintained, as was observed.

In intact normocapnic rats, RTN neurons are activated by carotid body stimulation, suggesting that activation of the RTN contributes to the peripheral chemoreflex (Takakura et al., 2006). However, hypoxia increases ventilation while silencing the RTN, which suggests that carotid body stimulation can also activate the respiratory pattern generator via an RTN-independent pathway (Basting et al., 2015). The persistence of the peripheral chemoreflex after near complete lesions of the RTN provides additional evidence for the existence of such a pathway.

The selectivity of RTN lesions towards the central component of the chemoreflex is by no means unique. Genetic deletion of serotonergic neurons or destruction of the locus coeruleus also produces substantial reductions of the CRC without reducing the hypoxic ventilatory response (Hodges et al., 2008; Gargaglioni et al., 2010). This suggests that the CRC is far more dependent on the level of activity of wake-promoting neurons than the peripheral chemoreflex. This speculation is consistent with the strong excitatory effects of serotonin, noradrenaline and orexin on RTN neurons (Lazarenko et al., 2011; Hawryluk et al., 2012; Kuo et al., 2016). The carotid bodies are the first line of defense against hypoventilation. The relative independence of this reflex from the activity of wake promoting modulators may have survival value.
Loss of RTN Nmb neurons reduces neither the frequency nor the amplitude of hypoxia-induced sighs.

Hypoxia and arousal are the most common triggers of sighs (Ramirez, 2014). Even almost total elimination of RTN Nmb neurons did not change sigh frequency in rats exposed to hypoxia. This negative outcome is consistent with prior evidence that optogenetic stimulation of RTN neurons does not produce sighs in awake rats (Burke et al., 2015b) and that RTN neurons are typically silenced by alkalosis, a normal consequence of hypoxia (Basting et al., 2015). Moreover, RTN neurons are typically excited by hypercapnia/acidosis, a stimulus that reduces hypoxia-induced sigh incidence (Mulkey et al., 2004; Bell et al., 2009).

Importantly, sigh amplitude was also unaffected by RTN lesions. A non-specific impairment of the motor command to inspiratory muscles or a defect of muscle contractility is therefore unlikely to explain the inability of hypercapnia to increase V_T after RTN lesions. Since the hypoxic ventilatory reflex and sighing are both preserved, the most likely interpretation is that RTN lesions abrogate preferentially the CO$_2$-regulated excitatory drive to the pattern generator.

While our data do not support the view that RTN Nmb neurons trigger sighs, they do not entirely rule it out either. A small subset of RTN Nmb neurons may not be activated by hypercapnia (Shi et al., 2017) and could be those that regulate sighing (Li et al., 2016). These neurons could conceivably be selectively resistant to SSP-SAP.
RTN lesions do not cause sleep apnea, even under hyperoxia

We did not find any interaction between resting breathing parameters and the state of vigilance after RTN lesions. In other words, breathing parameters were proportionally changed during waking, slow-wave sleep and REM sleep in rats with RTN lesions compared to intact rats. The presumption, still unconfirmed by histopathology, is that the RTN is hypomorphic or fails to develop altogether in congenital central hypoventilation syndrome (CCHS)(Amiel et al., 2003; Dubreuil et al., 2008; Weese-Mayer et al., 2010). Based on the present results, the absence of the RTN could underlie much of the reduced hypercapnic ventilatory reflex of CCHS patients but it does not explain the severity of the hypoventilation present during slow-wave sleep (Weese-Mayer et al., 2010).

Phox2b mutations in humans also impair the peripheral chemoreflex to varying degrees (Perez & Keens, 2013; Carroll et al., 2014). *Phox2b* mutations have the potential of interfering with the development of the carotid bodies, the nucleus of the solitary tract and brainstem catecholaminergic neurons, all of which contribute to this reflex (Dauger et al., 2003; Stornetta et al., 2006; Goridis et al., 2010; Nobuta et al., 2015; Malheiros-Lima et al., 2017). The combination of a weak peripheral chemoreflex and a lack of RTN neurons may be required to cause severe hypoventilation during slow-wave sleep in CCHS patients. Indeed, in rats with large RTN lesions, hypoventilation was most pronounced when the animals were both in slow-wave sleep and under hyperoxia. Yet, even under these conditions, breathing remained regular and sleep apnea was not observed. In short, the combination of large RTN lesions and hyperoxia did not produce sleep apnea and therefore did not phenocopy the breathing disorder experienced by severely affected CCHS patients.
Similarities and differences between the effects of genetic (Phox2b^27alacki; Egr-2^{cre} mice) and toxin-induced lesions of the RTN

Although the genetic lesions of the RTN were in mice (Ramanantsoa et al., 2011) and the toxin-based lesions in rats, the resulting effects have some striking similarities. In both models, the animals survive the lesions, the CRC is greatly reduced, the HVR is preserved, resting V_E under normoxia is not significant changed and the contribution of the carotid bodies to breathing is enhanced. However, there are also notable differences between these models. The arterial PCO_2 set-point is increased in rats with toxin-based lesions whereas this parameter does not change in mice (Ramanantsoa et al., 2011). Although procedural details varied with respect to how the arterial blood gases were sampled, the absence of hypercapnia in adult Phox2b^27alacki; Egr-2^{cre} mice is consistent with the fact that neither V_T nor f_R were altered at rest, unlike in the rat model. Another difference is that the HCVR of Phox2b^27alacki; Egr-2^{cre} mice recovered to 40% of control in adulthood whereas, in toxin-lesioned rats, we observed up to 90% reduction of this reflex. This difference could be methodological: we measured the HCVR under hyperoxic conditions to minimize the contribution of the carotid bodies whereas the reflex was measured under normoxia in mice. Finally, unlike the Phox2b^27alacki; Egr-2^{cre} mice, rats with RTN lesions had a regular breathing rate without apnea, even during sleep.

In summary, genetic lesions of RTN in mice produce breathing deficits that are similar but not identical to those observed after SSP-SAP lesions in adult rats. A persistent hypoventilation occurs when the RTN is lesioned in adult rats and the CRC deficit may be more extreme. These differences could be species-related. Alternately, interfering with RTN development could trigger more efficient countervailing changes than when RTN lesions are performed in adults.
Experimental limitations and additional caveats

We did not destroy the RTN completely. In the LL cohort we still identified 29 ± 14 RTN neurons in one–in–six series of histological sections (estimated 92 ± 4 % reduction). Given the distinctly non-linear relationship existing between the chemoreflex deficit and the size of the lesions, the full contribution of the RTN to the CRC and the importance of this nucleus to maintain breathing during slow wave sleep has probably been underestimated.

Nmb neurons may not respond equally to hypercapnia as judged by Fos expression (Shi et al., 2017), therefore their contribution to the central respiratory chemoreflex could also be variable. This could explain some of the variability between the percentage of *Nmb* neurons destroyed and the magnitude of the chemoreflex deficit.

The breathing deficits that we observed could have resulted, at least partly, from the loss of parafacial neurons other than *Nmb* neurons. The validity of our interpretations will require confirmation using even more selective lesions of the *Nmb* neurons. Also, the physiological experiments were conducted 3-4 weeks after injection of the toxin. This delay may not have been sufficient for all compensatory mechanisms (sprouting of surviving neurons) to have reached a steady-state.

CONCLUSIONS

Based on the present results, at least 90% of the CRC is mediated via activation of RTN neurons which can likely be identified by the presence of *Nmb* transcripts. Near complete destruction of RTN in adult rats is survivable as is the congenital absence of this
nucleus in mice. Arterial pH is virtually unaffected by RTN lesions but arterial PCO$_2$ is elevated significantly at rest.

In the absence of the RTN, V$_T$ and f_R can still be vigorously activated by carotid body stimulation and sighs of normal amplitude are elicited by hypoxia. Thus, in quietly resting animals, the RTN seems to selectively mediate the bulk of the breathing stimulation evoked by a rise in CNS PCO$_2$ (Guyenet et al., 2017).

Despite an increased contribution of the carotid bodies to breathing, also noted by previous investigators (Ramanantsoa et al., 2011; Takakura et al., 2014), RTN lesions cause significant alveolar hypoventilation. The integrity of central chemoreceptors is therefore required to maintain normal alveolar ventilation at rest. The integrity of the peripheral chemoreceptors is equally important in that respect, especially in large species, in which peripheral chemoreceptor denervation produces very long-lasting and virtually irreversible (humans) or only partially and slowly reversible hypoventilation (Rodman et al., 2001; Smith et al., 2006).

RTN lesions in adult rats do not reproduce exactly the breathing deficits observed in mice in which the absence of this nucleus is caused by conditional expression of Phox2b27ala. Moreover, neither model phenocopies the congenital central hypoventilation syndrome exactly. The most obvious missing trait is sleep apnea. This sign of CCHS likely results from additional neuronal abnormalities besides the loss of the RTN.
Table 1. Resting cardiorespiratory parameters in control and rats with RTN lesions.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>ML</th>
<th>LL</th>
<th>P value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>f_R (breaths·min⁻¹)</td>
<td>74 ± 11</td>
<td>74 ± 6</td>
<td>87 ± 14*#</td>
<td>0.0328</td>
</tr>
<tr>
<td>V_T (ml·100g⁻¹)</td>
<td>0.45 ± 0.06</td>
<td>0.50 ± 0.1</td>
<td>0.32 ± 0.08*#</td>
<td>0.0019</td>
</tr>
<tr>
<td>V_E (ml·min·100g⁻¹)</td>
<td>33.2 ± 5.7</td>
<td>37.4 ± 7.9</td>
<td>27.2 ± 6.3#</td>
<td>0.1215</td>
</tr>
<tr>
<td>n</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>BP (mmHg)</td>
<td>111 ± 9</td>
<td>112 ± 9</td>
<td>111 ± 4</td>
<td>>0.9999</td>
</tr>
<tr>
<td>HR (mmHg)</td>
<td>358 ± 26</td>
<td>358 ± 25</td>
<td>341 ± 25</td>
<td>0.5050</td>
</tr>
</tbody>
</table>

Legend: ML, mild lesion; LL, Large lesion; BP, blood pressure; HR, heart rate. Statistical analysis by one-way ANOVA with Bonferroni’s post-test. There was an overall effect of the extent of RTN lesions on f_R (P=0.0125); Bonferroni’s post-test for f_R: *Control vs. LL, P=0.0287; #ML vs. LL, P=0.0210). There was also an overall effect of lesion on V_T (P<0.0001); Bonferroni’s post-test for V_T: *Control vs. LL, P=0.0019; ML vs. LL, P<0.0001. There was an overall effect of extent of the lesions on V_E (P=0.0042). Bonferroni’s post-test: #ML vs. LL, P=0.0032. There was no overall effect of extent of the lesions on resting BP (P=0.9226) and HR (P=0.2682).
Table 2. Resting metabolic parameters in RTN lesion rats and control

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>SP-SAP (2.4 ng)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>VO₂ (ml·min⁻¹·100g⁻¹)</td>
<td>2.1 ± 0.18</td>
<td>1.9 ± 0.21</td>
<td>0.1886</td>
</tr>
<tr>
<td>VCO₂ (ml·min⁻¹·100g⁻¹)</td>
<td>1.8 ± 0.18</td>
<td>1.6 ± 0.19</td>
<td>0.1111</td>
</tr>
<tr>
<td>Resting Vₑ (ml·min⁻¹·100g⁻¹)</td>
<td>30.0 ± 4.0</td>
<td>24.1 ± 5.8</td>
<td>0.1136</td>
</tr>
<tr>
<td>Hypercapnic Vₑ (ml·min⁻¹·100g⁻¹)</td>
<td>73.3 ± 10.6</td>
<td>39.7 ± 28.4 *</td>
<td>0.0426</td>
</tr>
</tbody>
</table>

Legend: VO₂, oxygen consumption; VCO₂, CO₂ production; Resting Vₑ, minute-volume in normoxia, normocapnia; Hypercapnic Vₑ, minute-volume measured in hypercapnia (FiCO₂=6%) in a hyperoxia background (FiO₂=65%). *Different from control.

Table 3. Blood gases of control and rats with RTN lesions exposed to hypoxia (FiO₂=10%)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>ML</th>
<th>LL</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>7.63 ± 0.03</td>
<td>7.61 ± 0.03</td>
<td>7.68 ± 0.02*#</td>
<td>0.0065</td>
</tr>
<tr>
<td>PaCO₂ (mmHg)</td>
<td>22.5 ± 1.5</td>
<td>22.7 ± 3.0</td>
<td>22.1 ± 2.1</td>
<td>>0.9999</td>
</tr>
<tr>
<td>PaO₂ (mmHg)</td>
<td>31.6 ± 1.5</td>
<td>32.4 ± 2.5</td>
<td>33.8 ± 1.7</td>
<td>0.2321</td>
</tr>
<tr>
<td>HCO₃⁻ (mmol·l⁻¹)</td>
<td>23.8 ± 1.7</td>
<td>23.0 ± 3.5</td>
<td>26.1 ± 2.3</td>
<td>0.4853</td>
</tr>
</tbody>
</table>

Legend: ML, mild lesion; LL, Large lesion; BP, blood pressure; HR, heart rate. Statistical analysis by one-way ANOVA and Bonferroni’s post-test. There was an overall effect of extent of the RTN lesion on blood pH during hypoxia (P=0.0001). Bonferroni’s post-test: *Control vs. LL, P=0.0065; #ML vs. LL, P=0.0001. There was no overall effect of RTN lesions on PaCO₂ (P=0.8849), PaO₂ (P=0.1792) or HCO₃⁻ (P=0.1021) during hypoxia.
Figure legends

Figure 1: [Sar9, Met (O$_2$)$_{11}$]-substance P (SSP-SAP) destroys RTN Neuromedin B (Nmb) neurons, reduces C1 (tyrosine hydroxylase, Th) neurons and spares medial medullary serotonin (tryptophan hydroxylase, Tph) and Nmb neurons.

A, B. Photomicrographs of approximately the same level of transverse cut ventral medulla from control (A) or SSP-SAP large lesion rats (B). Midline is towards the right, dorsal towards the top and ventral surface shown at the bottom. Sections were treated with RNAscope for multiplex fluorescent in situ hybridization; Nmb transcripts are shown in magenta, Th transcripts are in blue and Tph transcripts are in green. Scale bar in B=250 μm, applies to both A and B.

C, D. Drawings of 9 transverse sections from approximately 12 to 10 mm behind bregma encompassing the entirety of the RTN collapsed into one plane showing the distribution of transcripts for RTN Nmb (dark magenta circles), non-RTN Nmb (“midline” Nmb, yellow squares), Th (orange diamonds) and Tph (green triangles). C is from the same animal shown in A where D is from the same animal shown in B. Scale in C=1 mm, applies to C and D.

E, F. Photomicrographs from the same animals shown in A and B respectively showing the separation of RTN Nmb neurons from C1 (Th) neurons and midline Nmb (non RTN neurons) as well as the different size and shape of these classes of Nmb neurons in the insets surrounded by dotted lines. Th transcripts shown in blue, Nmb transcripts in magenta. Scale in E=200 μm for main part of E and F or 15 μm for the top inset and 25 μm for the lower inset in E.
Figure 2: Number of Nmb, Th and Tph neurons in SSP-SAP injected rats and control.

A. Effect of dose of SSP-SAP on number of Nmb neurons. There was an overall effect of the dose (P<0.0001, Kruskall-Wallis). Dunn’s post-test: * Control vs. SSP-SAP (1.2 ng, P=0.0012) and Control vs. SSP-SP (2.4 ng, P<0.0001).

B. Number of Nmb neurons after posthoc regroupment of lesioned rats into two groups according to lesion size. There was an overall effect of the lesion size [F (2, 32) =70.1; P<0.0001]. Bonferroni’s post-test: * Control vs. Mild lesion (P<0.0001), Control vs. Large lesion (P<0.0001), # Mild lesion vs. Large lesion (P=0.0004).

C. Number of Th neurons in the large lesion group (n=4) compared to control (n=4). There was a significant reduction of Th neurons on the large lesion group compared to control (* Control vs. Large lesion, P=0.0286, Mann-Whitney).

D. Number of midline Nmb neurons in the large lesion group (n=4) compared to control (n=4). There was no significant differences between the number of midline Nmb neurons of large lesion compared to control (P=0.7943, Unpaired t test).

E. Number of Tph neurons in the large lesion group (n=4) compared to control (n=4). There was no significant differences between the number of Tph neurons of large lesion compared to control (P=0.4055, Unpaired t test).
A. Number of Nmb neurons

- Saline
- SSP (0.6 ng)
- SSP (1.2 ng)
- SSP (2.4 ng)

B. Number of Nmb neurons

- Control
- Mild lesion
- Large lesion

C. Th neurons

- Control
- Large lesion

D. Nmb neurons

- Control
- Large lesion

E. Tph neurons

- Control
- Large lesion

This article is protected by copyright. All rights reserved.
Figure 3: Blood gases under normoxia in intact vs. RTN-lesioned rats

A. Arterial PCO₂ in control rats (C), rats with mild (ML) or large (LL) lesions of RTN. One-way ANOVA [F (2, 30) = 15.7; P<0.0001]. Bonferroni’s multiple comparison test: *, P < 0.0001; #, P < 0.0001.

B. Arterial PO₂ in control rats (C), rats with mild (ML) or large (LL) lesions of RTN. One-way ANOVA [F (2, 30) = 7.6; P=0.0021]. Bonferroni’s multiple comparison test: *, P=0.0042; #, P < 0.0074.

C. Arterial pH in control rats (C), rats with mild (ML) or large (LL) lesions of RTN. One-way ANOVA [F (2, 30) = 5.19; P=0.0116]. Bonferroni’s multiple comparison test: *, P=0.0464; #, P=0.0154.

D. Plasma bicarbonate in control rats (C), rats with mild (ML) or large (LL) lesions of RTN. Kruskall-Wallis test (P=0.0018). Dunn’s multiple comparison test: *, P=0.0033; #, P=0.0102.

E. Correlation between the number of Nmb neurons and PaCO₂. There was a significant correlation between the number of Nmb neurons and the arterial PCO₂ (P=0.0048, Pearson r = -0.4788).

F. Correlation between the number of Nmb neurons and resting PaO₂. There was a significant correlation between the number of Nmb neurons and the PaO₂ (P=0.0082, Pearson’s r = 0.4522).
Figure 4: Effect of RTN lesions on the breathing response to CO\(_2\) under hyperoxia

A. Experimental protocol. Down-pointing arrowheads indicate times when blood gases were measured (results in the next figure). Arrow pointing up indicate times when plethysmographic measurements were analyzed.

B. Representative plethysmographic recordings from a control rat, a rat with mild lesion and a rat with large lesion of RTN.

C. Effect of hypercapnia on \(f_r\) analyzed by 2-way RM ANOVA. \(f_r\) was significantly related to both inhaled gas mixture \([F (4, 120) = 214.9; P<0.0001]\) and RTN lesions \([F (2,30) = 37.2; P<0.0001]\). There was also a highly significant interaction between these two factors \([F (8,120) = 27.2; P<0.0001]\). Bonferroni’s multiple comparisons test: * control vs. large lesion (P= 0.0361 at 21/0, P < 0.0001 for all other gas mixtures); # mild vs. large lesion (P=0.0002 at 65/3, P<0.0001 at 65/6 and 65/9); & control vs. mild lesion (P < 0.0001 at 65/6, P=0.0059 at 65/9).

D. Effect of hypercapnia on \(V_T\). 2-way RM ANOVA. \(V_T\) was significantly related to both inhaled gas mixture \([F (4,120) = 110.2; P<0.0001]\) and extent of the RTN lesion \([F (2, 30) = 19; P<0.0001]\). There was also a highly significant interaction between these two factors \([F (8, 120) = 8; P<0.0001]\). Bonferroni’s multiple comparisons test: *, control vs. large lesion (P=0.0069 at 21/0, P=0.0011 at 65/0, P=0.0002 at 65/3 and P<0.0001 for all other gas mixtures); #, mild vs. large lesion (P=0.0064 at 21/0, P=0.0011 at 65/0, P=0.0013 at 65/3, P<0.0001 at 65/6 and 56/9).
E. Effect of hypercapnia on V_E. 2-way RM ANOVA. V_E was significantly related to both inhaled gas mixture [$F (4, 120) = 259.4; P<0.0001$] and extent of the RTN lesion [$F (2, 30) = 36.5; P<0.0001$]. There was also a highly significant interaction between these two factors [$F (8, 120) = 31.4; P<0.0001$]. Bonferroni’s multiple comparisons test: *, control vs. large lesion ($P=0.0476$ at 65/0, $P<0.0001$ for all other gas mixtures); #, mild vs. large lesion ($P=0.0001$ at 65/3, $P<0.0001$ at 65/6 and 56/9).
Figure 5: Effect of RTN lesions on the hypercapnic ventilatory reflex

This figure illustrates the differences between the breathing parameters recorded during exposure to 3, 6 and 9% FiCO₂ and the baseline values observed at the end of 2 minutes of hyperoxia (65/0 FiO₂/FiCO₂ time point in the preceding figure).

A. Effect of hyperoxic hypercapnia on ΔfR. Statistical analysis by 2-way RM ANOVA. ΔfR was significantly related to both FiCO₂ [F (2, 60) = 154.3; P<0.0001] and the extent of the RTN lesion [F (2, 30) = 36.7; P<0.0001]. There was also a highly significant interaction between these two factors [F (4, 60) = 10.2; P<0.0001]. Bonferroni's multiple comparisons: *, control vs. large lesion (P=0.004 at 3% FiCO₂, P < 0.0001 at 6% and 9% FiCO₂); &, control vs. mild lesion (P=0.0007), #, mild vs. large lesion (P=0.0235 at 3% FiCO₂, P<0.0001 at 6 and 9% FiCO₂).

B. Effect of hyperoxic hypercapnia on ΔVt. Statistical analysis by 2-way RM ANOVA. ΔVt was significantly related to both FiCO₂ [F (2, 60) = 53.1; P<0.0001] and extent of the RTN lesion [F (2, 30) = 3.6; P=0.0394]. There was also a highly significant interaction between these two factors [F (4, 60) = 11; P<0.0001]. Bonferroni's multiple comparisons: *, control vs. large lesion (P = 0.0003 at 9% FiCO₂); #, mild vs. large lesion (P<0.0001 at 9% FiCO₂).

C. Effect of hyperoxic hypercapnia on ΔVe. Statistical analysis by 2-way RM ANOVA. ΔVe was significantly related to FiCO₂ [F (2, 60) = 161.2; P<0.0001] and to the extent of the RTN lesion [F (2, 30) = 41.6; P<0.0001]. There was also a highly significant interaction between these two factors [F (4, 60) = 19.1; P<0.0001]. Bonferroni's multiple comparisons: *, control vs. large lesion (P=0.0089 at 3% FiCO₂, P<0.0001 at 6% and 9% FiCO₂); #, mild vs. large lesion (P<0.0001 at 6 and 9% FiCO₂).
D. Blood gases measured at two time points under hyperoxia (FiO\textsubscript{2}=65\%) indicated in Figure 4A. For both group of rats, first point was analyzed during 1-2 min of hyperoxia (FiO\textsubscript{2}=65\% and FiCO\textsubscript{2}=0\%) and the second point during hyperoxia hypercapnia (FiO\textsubscript{2}=65\% and FiCO\textsubscript{2}=9\%). 2-way RM ANOVA. There was a significant overall effect of hypercapnia on PaCO\textsubscript{2} [F (1, 13) = 141.1; P<0.0001] and of the RTN lesion [F (1, 13) = 29.3; P=0.0001]. However, there was no significant interaction between these two factors [F (1, 13) = 1.59; P=0.2295]. Bonferroni's multiple comparisons: *, control vs. large lesion for PaCO\textsubscript{2} levels (P=0.0019, at FiCO\textsubscript{2}=0 and P<0.0001 at FiCO\textsubscript{2}=9\%). There was also an overall effect of hypercapnia on V\textsubscript{E} [F (1, 13) = 187.7, P<0.0001] and of extent of the RTN lesion on V\textsubscript{E} [F (1, 13) = 85.9; P<0.0001]. There was also an interaction between these two factors [F (1, 13) = 57.5; P<0.0001]. Bonferroni's multiple comparisons: # control vs. large lesion for V\textsubscript{E} during high level of PaCO\textsubscript{2} (P<0.0001).

E. Relationship between ΔV\textsubscript{E} and number of surviving RTN Nmb neurons at different FiCO\textsubscript{2}. An inverse exponential function (represented) provided the best fit.
Figure 6: Effect of RTN lesions on arterial blood pressure (BP) and heart rate (HR) during hyperoxic hypercapnia or hypoxia.

A. BP recorded under the various inhaled gas mixtures illustrated in Figure 4 A. 2-way RM ANOVA. There was a significant overall effect of the breathing mixture [F (4, 76) = 4.4; P =0.003] but no effect of lesion [F (2, 19) = 1.603; P=0.23] and no interaction between these two factors [F (8, 76) = 1.482; P=0.1779].

B. HR recorded under the same gas conditions as in panel A. 2-way RM ANOVA. There was a significant overall effect of the breathing mixture [F (4, 76) = 13.5; P<0.0001] but no effect of lesion [F (2, 19) = 1.3; P=0.2922] and no interaction between these two factors [F (8, 76) P=1.587; P=0.1428].

C. Effect of FiO₂ on BP. 2-way RM ANOVA. There was a significant overall effect of the breathing mixture [F (3, 51) = 8.5; P =0.0001] and the extent of the RTN lesion [F (2, 17) = 5.3; P = 0.0166] and a significant interaction between these two factors [F (6, 51) = 3.04; P=0.0128]. Bonferroni's multiple comparisons: Bonferroni's multiple comparisons: * control vs. large lesion (P=0.0035 at 12% FiO₂ or P=0.0002 at 10% FiO₂); # mild lesion vs. large lesion (P=0.0078).

D. Effect of FiO₂ on HR. 2-way RM ANOVA. There was a significant overall effect of the breathing mixture [F (3, 51) = 11.1; P < 0.0001] and extent of the RTN lesion [F (2, 17) = 4.4; P = 0.0282] and a significant interaction between these two factors [F (6, 51) = 3.5; P = 0.0053]. Bonferroni's multiple comparisons: *, control vs. large lesion (P=0.0002 at 15% FiO₂); &, control vs. mild (P=0.0208 at 15% FiO₂; P=0.048 at 12% FiO₂).
Figure 7: Hypoxic ventilatory reflex in rats with RTN lesions

A. Experimental protocol. Down-pointing arrowheads indicate times when blood gases were measured. Arrows pointing up indicate times when plethysmographic measurements were collected and analyzed.

B. Representative plethysmographic recordings from a control rat, a rat with mild lesion and a rat with large lesion of RTN.

C. Effect of hypoxia on Δf_R (f_R change relative to normoxia baseline). Statistical analysis by 2-way RM ANOVA. There was a significant overall effect of FiO$_2$ [F (2, 58) = 94.5; P<0.0001] and extent of the RTN lesion [F (2, 29) = 5.2; P=0.0117] and a highly significant interaction between these two factors [F (4, 58) = 4.97. P=0.0016]. Bonferroni's multiple comparisons: *, control vs. large lesion (P=0.003 at 12% FiO$_2$, P=0.0096 at 10% FiO$_2$); &, control vs. mild lesion (P=0.0044).

D. Effect of hypoxia on ΔV_T. Statistical analysis by 2-way RM ANOVA. There was no overall effect of FiO$_2$ [F (2, 58) = 2.9; P=0.0648] but there was a significant effect of RTN lesions [F (2, 29) = 12.6; P=0.0001] but significant interaction between these two factors [F (4, 58) = 4.7. P=0.0023]. Bonferroni's multiple comparisons: *, control vs. large lesion (P=0.0005 at 12% FiO$_2$, P < 0.0001 at 10% FiO$_2$); #, mild vs. large lesion (P=0.0022 at 12% FiO$_2$, P<0.0001 at 10% FiO$_2$).

E. Effect of hypoxia on ΔV_E. Statistical analysis by 2-way RM ANOVA. There was a significant overall effect of FiO$_2$ [F (2, 58) = 223; P<0.0001] but no effect of RTN lesions [F (2, 29) = 1.9; P =0.1673] and no interaction between these two factors [F (4, 58) = 1.8, P=0.1451].

This article is protected by copyright. All rights reserved.
F. Correlation between ΔV_E elicited by 10% FiO_2 and number of Nmb neurons. There was no significant correlation between the ΔV_E in response to hypoxia and the number of Nmb neurons ($P=0.0627$, Pearson $r = -0.3328$).
Figure 8: Effect of RTN lesions on sighing during normoxia or hypoxia

A. Representative plethysmography recordings from a rat without RTN lesions (control), a rat with a moderate lesion and a rat with a large lesion of this nucleus. All recordings obtained under normoxia.

B. Higher resolution examples from the same rats illustrating that the kinetics of the sighs and their tidal volume (highlighted in red) were unaffected by lesions of the RTN.

C. Sigh frequency under normoxia (21% FiO$_2$) vs. hyperoxia (65% FiO$_2$). Statistics: 2-way RM ANOVA. Sigh frequency was significantly related to the O$_2$ level [F (1, 32) = 48.5; P<0.0001] and to the extent of RTN lesions [F (2, 32) = 7.2; P=0.0026] but there was no interaction between these two factors [F (2, 32) = 0.06794; P=0.93]. Bonferroni's multiple comparisons: *, control vs. large lesion (P=0.006 under normoxia, P=0.01 under hyperoxia)

D. Sigh frequency under three levels of hypoxia. 2-way RM ANOVA. Sigh frequency was significantly related to O$_2$ level [F (2, 58) = 31.4; P<0001] but there was no overall effect of RTN lesions [F (2, 29) = 2.06; P=0.1456] and no interaction between these two factors [F (4, 58) = 1.58; P=0.1909]. Bonferroni's multiple comparisons: #, control vs. mild lesion (P=0.0374 at 10% FiO$_2$).
Figure 9: Effect of RTN lesions on the ventilatory response to hyperoxia

A. Experimental protocol. Down-pointing arrowheads indicate times when blood gases were measured (values not shown in figure). Arrow pointing up indicate times when plethysmographic measurements were analyzed.

B. Representative plethysmographic recordings from a control rat, a rat with a mild lesion and a rat with a large lesion of the RTN.

C. Effect of hyperoxia on f_R. Statistics: 2-way RM ANOVA. f_R was significantly related to FiO$_2$ [F (2, 62) = 45; P < 0.0001] but not the extent of the RTN lesion [F (2, 31) = 0.47; P=0.6396]. However, there was a highly significant interaction between these two factors [F (4, 62) = 15.4; P<0.0001]. Symbols represent statistical significance with Bonferroni's multiple comparisons test: * control vs. large lesion (P=0.0065 in normoxia; P=0.0015 after 1-3 min hyperoxia); # mild vs. large lesion (P=0.0035 at baseline; P=0.0138 after 1-3 min hyperoxia).

D. Effect of hyperoxia on V_T. Statistics: 2-way RM ANOVA. V_T was not correlated with FiO$_2$ [F (2, 62) = 1.12; P=0.33] but was highly correlated with the extent of RTN lesions [F (2, 31) = 23.9; P<0.0001]. There was no interaction between these two factors [F (4, 62) = 0.99; P=0.4199]. Bonferroni's multiple comparisons test: * control vs. large lesion (P=0.003 in normoxia; P<0.0001 under hyperoxia at both time points); # mild vs. large lesion (P < 0.0001).

E. Effect of hyperoxia on V_E. Statistics: 2-way RM ANOVA. V_E was significantly related to both FiO$_2$ [F (2, 62) = 22.5; P<0.0001] and the extent of the RTN lesion [F (2, 31) = 19.5; P < 0.0001] and there was a highly significant interaction between these two factors [F (4,
62) = 6.3; P=0.0002]. Bonferroni’s multiple comparisons test: * control vs. large lesion (P<0.0001); # mild vs. large lesion (P=0.0071 at baseline; P<0.0001 under hyperoxia).
Figure 10: Effect of RTN lesions on the ventilatory response to hyperoxia

This figure illustrates the differences between the breathing parameters recorded early (1-3 min) after the start of hyperoxia or late (15-20 min) and the baseline values recorded in normoxia (see experimental design in preceding figure).

A. Effect of hyperoxia on ΔfR. Statistical analysis by 2-way RM ANOVA. ΔfR was significantly related to the duration of exposure to hyperoxia [F (1, 31) = 28.7; P<0.0001] and the extent of the RTN lesion [F (2, 31) = 19.4; P<0.0001]. There was also a highly significant interaction between these two factors [F (2, 31) = 5.7; P=0.0076]. Bonferroni’s multiple comparisons test: * control vs. large lesion (P<0.0001 at 1-3 min, P=0.0001 at 15-20 min); #, mild vs. large lesions (P<0.0001 at 1-3 min, P=0.0017 at 15-20 min).

B. Effect of hyperoxic hypercapnia on ΔVT. 2-way RM ANOVA. ΔVT was related neither to hyperoxia [F (1, 31) = 0.64; P=0.4308] nor to the extent of the RTN lesion [F (2, 31) = 1.71; P=0.1970] and there was no significant interaction between these two factors [F (2, 31) = 0.3409; P=0.7137].

C. Effect of hyperoxic hypercapnia on ΔVE. 2-way RM ANOVA. ΔVE was significantly related to the time in hyperoxia [F (1, 31) = 9.8; P=0.0037] and to the extent of the RTN lesion [F (2, 31) = 11.6; P=0.0002]. There was no significant interaction between these two factors [F (2, 31) = 0.95; P=0.3973]. Bonferroni’s multiple comparisons test: * control vs. large lesion (P < 0.0001 at 1-3 min, P=0.0014 at 15-20 min); #, mild vs. large lesions (P<0.0027 at 1-3 min).

D. PaCO2 under normoxia and after 15-20 min of hyperoxia (time points indicated in Fig. 9A). 2-way RM ANOVA. There was a significant effect of FiO2 [F (1, 19) = 111.6; P<0.0001] and of the extent of the RTN lesion [F (2, 19) = 27.76; P<0.0001] and a
significant interaction between these two factors \[F (2, 19) = 23.19; P<0.0001 \].

Bonferroni’s multiple comparisons test: * control vs. large lesion (P=0.0067 under normoxia, P<0.0001 under hyperoxia); #, mild vs. large lesions (P<0.0041 under normoxia, P<0.0001 under hyperoxia).

E. Relationship between \(\Delta V_E \) and number of surviving RTN \(Nmb \) neurons after 1-3 min of hyperoxia modeled by linear regression. Significant positive correlation between the number of \(Nmb \) neurons and respiratory response to short hyperoxia (P=0.0001; Pearson r = 0.6156).

F. Relationship between \(\Delta V_E \) and number of surviving RTN \(Nmb \) neurons during after 15-20 min of hyperoxia modeled by linear regression. Significant positive correlation between the number of \(Nmb \) neurons and respiratory response to short hyperoxia (P=0.0222; Pearson r = 0.3969).
Figure 11: Breathing under normoxia: state-dependence and effect of RTN lesions

A. Control rat. From top to bottom: EEG power spectrum (0–30 Hz), EEG (raw signal), neck EMG and air flow signal (plethysmography, inspiration downward). Excerpts were recorded during quiet waking, slow-wave sleep or REM sleep.

B. Rat with a large lesion of the RTN. Same data presentation.

C. Effect of RTN lesions on state-dependence of V_T. 2-way ANOVA. There was a significant overall effect of the state of vigilance [$F (2, 83) = 24.8; P<0.0001$] and of the extent of the RTN lesion [$F (2, 83) = 25.0; P<0.0001$] but no interaction between these two factors [$F (4, 83) = 0.54; P=0.7051$]. Bonferroni's multiple comparisons: *, control vs. large lesion ($P=0.020$ during wake; $P=0.002$ during SW-S; $P=0.017$ during REM sleep); #, mild vs. large lesion ($P<0.0001$ during wake and SW-S).

D. Effect of RTN lesions on state-dependence of f_R. 2-way ANOVA. There was a significant overall effect of the state of vigilance [$F (2, 83) = 19.7; P<0.0001$] and of the extent of the RTN lesion [$F (2, 83) = 5.8; P=0.0043$] on f_R but no interaction between these two factors [$F (4, 83) = 0.79; P=0.53$]. Bonferroni's multiple comparisons: #, mild vs. large lesion ($P=0.0382$).

E. Effect of RTN lesions on state-dependence of V_E. 2-way ANOVA. There was a significant overall effect of the state of vigilance [$F (2, 83) = 6.3; P=0.0028$] and of the extent of the RTN lesion on V_E [$F (2, 83) = 13.4; P<0.0001$] on V_E but no interaction between these two factors [$F (4, 83) = 0.56; P=0.6935$]. Bonferroni's multiple comparisons: *, control vs. large lesion ($P=0.0339$); #, mild vs. large lesion ($P=0.0007$ in the awake state; $P=0.003$ in SW-sleep).
Figure 12: Breathing under hyperoxia: state-dependence and effect of RTN lesions

A. Effect of RTN lesions on state-dependency of V_T under hyperoxia. 2-way RM ANOVA. There was an overall effect of state of vigilance [$F (1, 19) = 41.5; P<0.0001$] and of the extent of the RTN lesions [$F (1, 19) = 46; P<0.0001$] but no significant interaction between both factors [$F (1, 19) = 0.37; P=0.5520$]. Bonferroni’s multiple comparisons: *, control vs. large lesion ($P<0.0001$ for both stages of vigilance).

B. Effect of RTN lesions on state-dependency of f_R under hyperoxia. 2-way RM ANOVA. There was no overall effect of state of vigilance [$F (1, 19) = 2.3; P=0.1456$] but there was a significant effect of RTN lesions [$F (1, 19) = 7.2; P=0.0148$] but no significant interaction between both factors [$F (1, 19) = 1; P=0.3305$]. Bonferroni’s multiple comparisons: *, control vs. large lesion ($P=0.0139$).

C. Effect of RTN lesions on state-dependency of V_E under hyperoxia. 2-way RM ANOVA. There was an overall effect of state of vigilance [(F (1, 19) = 35.7; P<0.0001] and the extent of the RTN lesion [$F (1, 19) = 47.3; P<0.0001$] but no significant interaction between both factors [$F (1, 19) = 1.1; P=0.3068$]. Bonferroni’s multiple comparisons: *, control vs. large lesion ($P<0.0001$ for both stages of vigilance).

D. Effect of RTN lesions on breathing variability during the different sleep stages. 2-way ANOVA. There was an overall effect of sleep stage on the CV [$F (2, 57) = 47.3; P<0.0001$] but no significant effect of RTN lesions [$F (1, 57) = 1.287; P=0.2614$] and no interaction [$F (2, 57) = 1.021; P=0.3668$]. Bonferroni’s multiple comparisons for control: * awake vs. REM ($P=0.0003$) and SW-S vs. REM ($P<0.0001$); and for large lesion: # awake vs. REM ($P<0.0001$) and SW-S vs. REM ($P<0.0001$).
E. Effect of hyperoxia on breathing variability during awake and SW-S in rats with RTN lesions and control rats. 2-way RM ANOVA. There was an overall effect of hyperoxia [F (1, 19) = 9.659; P= 0.0058] and extent of the RTN lesion [F (1, 19) = 9.866; P=0.0054], however no interaction between these two factors [F (1, 19) = 1.893; P=0.1849]. Bonferroni’s multiple comparisons: * Control vs. Large lesion (P=0.0030).

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.

ADDITIONAL INFORMATION

Competing interest

The authors declare they have no competing interest.

Author contributions

G.M.P.R.S., R.K, S.B.G.A., R.L.S. and P.G.G. designed the research; G.M.P.R.S., R.K. and D.S.S. performed the experiments; G.M.P.R.S., S.B.G.A and R.L.S. analyzed the data; G.M.P.R.S., R.L.S. and P.G.G. wrote the manuscript. All authors approved the final version of the manuscript and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All persons designated as authors qualify for authorship, and all those who qualify for authorship are listed.

Funding

This work was supported by grants from the National Institutes of Health (HL074011 and HL28785 to PGG).

Acknowledgements

None.
George Souza received a PhD in Physiology from the University of Sao Paulo, Brazil (2017). Currently, he is a post-doctoral fellow in the University of Virginia (UVA). He has been and still working on central control of breathing and blood pressure with focus on the role of specific brainstem neurons involved in these functions.