

 Lebanese American University Repository (LAUR)

Post‐print version/Author Accepted Manuscript

Publication metadata

Title: Natural Optimization Algorithms for the Cross‐Dock Door Assignment Problem

Author(s): Abbas A. Tarhini; Manal M. Yunis; Mohamad Chamseddine

Journal: IEEE Transactions on Intelligent Transportation Systems

DOI/Link: https://doi.org/10.1109/TITS.2016.2519104

How to cite this post‐print from LAUR:

Tarhini, A. A., Yunis, M. M., & Chamseddine, M. (2016). Natural optimization algorithms for the

cross‐dock door assignment problem. IEEE Transactions on intelligent transportation systems,

DOI, 10.1109/TITS.2016.2519104, http://hdl.handle.net/10725/11189

 Year 2016

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for

all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.

This Open Access post‐print is licensed under a Creative Commons Attribution‐Non Commercial‐No Derivatives

(CC‐BY‐NC‐ND 4.0)

This paper is posted at LAU Repository

For more information, please contact: archives@lau.edu.lb

Paper Title: Natural Optimization Algorithms for the Cross-Dock Door Assignment

Problem

Journal: IEEE Transactions on Intelligent Transportation Systems. H Index 112, Rank: Q1

Citation: Tarhini, A., Yunis , M., Chamseddine, M. (2016). Natural Optimization

Algorithms for the Cross-Dock Door Assignment Problem, IEEE Transactions on

Intelligent Transportation Systems, 17(8), pp. 2324 – 2333.

 Link: https://ieeexplore.ieee.org/document/7434649

https://ieeexplore.ieee.org/document/7434649

Natural Optimization Algorithms for the Cross-

Dock Door Assignment Problem
Abbas Tarhini, abbas.tarhini@lau.edu.lb

Lebanese American University, Beirut, Lebanon

Manal Yunis, myunis@lau.edu.lb

Lebanese American University, Beirut, Lebanon

Mohamad Mohamad Jaafar Chamseddine, mchamseddine@matrixdesign.com.lb

Matrix Design Foundation, Beirut, Lebanon

Abstract—Cross-docking is a practice in logistics in which

shipments are directly moved from an inbound truck into

an outbound truck. A recognized problem in this domain

is the assignment of trucks to doors in a way that the

distance to be traveled between the doors is minimized.

This problem is known as the Cross-Dock Door

Assignment Problem (CDAP). A lot of research has been

conducted regarding this topic still, up to our knowledge,

none used Scatter Search (SS). In this paper, we

implemented this evolutionary metaheuristic algorithm

and tested it, then compared the results with those of

another evolutionary algorithm, Genetic Algorithm (GA).

The results indicate that the SS outperformed the GA.

Keywords — Cross-docking, Door Assignment Problem,

Scatter Search, Metaheuristics, Logistics.

I. INTRODUCTION

Cross-docking is a new model in logistics in which an
inbound truck, usually with less-than-truckload (LTL)
shipment, directly loads its cargo into a specified outbound
truck without the need for temporary storage. In case storage
was required, materials are stored for twenty four hours at
maximum. In fact, this limited presence of storage will
mitigate a cumbersome process common in traditional
inventories. At some stages LTL shipments created a financial
problem as it was causing losses. This loss is due to the
violation of a basic economical concept known as the
“economy of scale” which states that the truck is to be filled
completely so that the expenses of shipping -which are fixed-
will be divided on the items being shipped. Consequently, the
main goal of the model is to sort and consolidate shipments
from different suppliers into a fully loaded truck (LT) in an
attempt to achieve economies of scale. An illustration of
Cross-docking is shown in Fig. 1. Fig.1. (a) shows the process
inside a distribution center. Fig. 1. (b) shows the case when
the truck is not fully loaded and thus the supplier will
encounter a higher increase in the price. Fig. 1. (c) shows the
creation of a hub in which shipments from different suppliers
are sorted based on their destination and then consolidate into
one fully loaded truck (LT) and then moved to the consumer
thus achieving economy of scale.

Fig. 1. Process inside a Cross-dock (left); The Distribution Industry before
and after the emergence of Cross-Docking (right)

The decreased operational costs and improved response
and delivery time made cross-docks a desirable practice for
transportation and other similar industries. Still, with the fierce
competition and low profit margins, cross-dock managers
need to take actions on different decision levels to further
increase effectiveness and efficiency. One crucial decision is
to be taken at the operational level and is related to assigning
trucks to doors. This problem is known as the Cross-dock
Door Assignment Problem (CDAP) which is a
nondeterministic polynomial time (NP)-complete problem.
Such problems may be too computationally-intensive to find
their exact solution. In these situations evolutionary
techniques can be effective. In fact, due to their random
nature, evolutionary algorithms are never guaranteed to find
an optimal solution for any problem, but they will find a good
solution if one exists.

After reviewing the recent available literature related to the
cross-docking, this paper proposes a novel evolutionary
heuristic for solving the CDAP. Specifically, a Scatter Search
(SS) algorithm is presented to solve this problem. In fact the
selection of the SS algorithm was motivated by Glover’s
perception [19] which states that “in contrast to other
evolutionary methods like genetic algorithms, scatter search is
founded on the premise that systematic designs and methods
for creating new solutions afford significant benefits beyond
those derived from recourse to randomization; further SS uses

(a)

 (b)

(c)

strategies for search diversification and intensification that
have proved effective in a variety of optimization problems”.
Thus, we presented Scatter Search (SS) algorithm and tested it
with randomly generated input which simulates actual data in
cross-docks with up to 192 doors. The goal is to minimize the
traveling distance of the handling machines when moving
cargo from an inbound truck to an outbound truck. The results
of the SS are then compared to those of another evolutionary
algorithm (Genetic Algorithm). The test cases results clearly
indicate that the SS solutions outperformed those of the GA
for problem sizes greater than 24.

The rest of this paper is organized as follows. The next
section is devoted for the literature review. Section 3
represents the mathematical formulation. The Scatter Search-
based heuristic is discussed in details in Section 4. Then
Section 5 presents the modified SS version. Section 6 presents
the empirical results. Finally, the conclusion is found in
Section 7.

II. LITERATURE REVIEW

fo e nO the leading studies in the domain of door
assignment problem in cross-docking was carried out by Tsui
and Chang in 1990. Later they improved their work through
presenting a more advanced approach for the solution [1]. The
problem formulation included fixed origin doors on one side
of the cross-dock and fixed destination doors at the opposite
side taking into consideration that the cross-dock shape is
rectangular. The goal was to determine which of the doors are
to be classified as destination doors, and which are to be
classified as origin doors so that the travel time of the forklifts
that move the shipments is minimized. They proposed a
bilinear programming model with the usage of branch and
bound algorithm.

Other works [2] [3] focused on the assignment of the
trucks to doors in a dynamic way in which both inbound and
outbound doors are not fixed. This way, not only the material
handling workload was minimized (i.e. the objective
function), but also the congestion problem inside the terminal
was mitigated. They presented their problem as a Mixed
Integer Programming Model and used Simulated Annealing
Algorithm to solve the model.

Aickelin and Adewunmi [4] proposed a Memetic
algorithm based on the combination of both Local Search and
Genetic Algorithms. The aim of the model is to minimize the
traveling distance of the handling vehicles.

Bermudez [5] used Genetic Algorithm (GA) aiming at
minimizing the weighted travel distance. The GA was then
compared with a pair wise exchange algorithm. The results of
the case studies showed an acceptable performance for the
GA. The research also included an extensive study on the
impact of parameter changes (especially those related to
crossover and mutation) in the GA.

Another known problem in the domain of cross-docking is
the scheduling problem in which the sequence of trucks in a
cross-dock is to be determined. Such arrangement is
performed in order to decrease the time makespan therefore
minimizing costs. In their paper, Hazzoury et al. [6] present a
reformulation for the integer programming model that was

introduced by Zhaowei Miao et al. The main objective of the
research is minimizing the number of trucks that leave without
being fully filled, and at the same time minimizes the
operations cost related to the shipping process.

Arabani et al. [7] used simulated annealing algorithm to
schedule the arrival and departure of trucks at the cross-
docking terminal. They only discussed one case in which there
is only one cross-docking terminal.

Larbi et al. [8] proposed a graph based model to approach
the transshipment scheduling problem with the goal of
minimizing the cost. Transshipment operations are those
related to: first, the cost resulting from storing certain items
when their outbound truck is not available, second, the cost
resulting from the move of the trucks from the doors to the
parking zone and vice versa. The model was tested on a case
of one outbound and one inbound door.

Apart from scheduling and door assignment, Agustina et
al. [9] covers almost all of the significant literature related to
cross-docking in an impressive and comprehensive manner.
They divided the highlighted biography into: first, those
discussing the operational level in which short term decisions
have to be taken, e.g. assignment and scheduling problems;
second, the research focusing on the tactical level, e.g. those
dealing with the layout of the cross-dock; third, those related
to the strategic level such as determining the location of the
cross-dock or number of vehicles in the network.

Bartholdi and Gue [10] proposed a model for the layout of
a cross-dock taking into consideration the door assignment
problem. The main goal of the work is to change the layout of
the inventory in order to reduce the labor cost through
decreasing the traveling distance and congestions. One
important outcoming was the suggestion of clustering high
flow inbound doors with their relative outbound doors
therefore decreasing the traveling distance, additionally,
disperse these clusters among the cross-dock in an attempt to
reduce congestion. They claim after implementing their model
there was an increase in the productivity of the cross-dock by
11%. Later Bartholdi and Gue [11] focused on another paper
on the best physical shape for a cross-docking inventory. They
reached a conclusion that the “I” shape is needed for cross-
docks with doors equal to or less than 150. And that shape “T”
is adequate for those of size between 150 and 200. Finally,
shape “X” is the best for inventories with more than 200
doors.

Additionally, Vis and Roodbergen [12] presented a model
for the storage of products in a cross-dock. This model is
designed for cases in which some items are to be stored for a
short period of time until the outbound truck is available to
load them out. They used a minimum cost flow problem
model.

III. CROSS-DOCKING DOOR ASSIGNMENT PROBLEM

A. Preliminary

With a fierce competition with rivals, transportation and
logistics companies noticed a decrease in the profit margins if
some of their trucks are not fully loaded. Accordingly,
efficient and effective measures had to be taken at the

operational level by assigning trucks to doors. The effect of
such assignment is illustrated in the following example on
cross-dock inventory. This example shows two different
permutations to assign four trucks to four doors with their
corresponding costs.

The first permutation is illustrated in Fig. 2. In this
permutation, the four trucks 1, 2, 3, 4 are assigned to the
corresponding four doors 1, 2, 3, 4.

Fig. 2. Truck-door assignment, first permutation

It has four trucks and four doors where trucks 1, 2, 3, and 4

are assigned to doors 1, 2, 3, and 4 respectively. Fig. 2 clearly
shows that trucks 1, 3, and 4 are inbound trucks, and truck 2 is
an outbound truck. The blue numbers above each arrow
represent the exact flow quantity between two trucks. For
example, the flow quantity between trucks 1 and 2 is 300. As
for the red numbers below the arrows, they represent the
distance between the doors. In Fig. 2, the distance between
door 1 and 2 is 500. It is important at this stage to mention that
trucks 1 and 2 having the highest flow among them are
assigned deliberately to doors 1 and 2 respectively, which in
their turn have the smallest distance spanning them. The cost
of such a permutation would be calculated as follows (this
formula will be verified in the following section):

(300*500) +

(100*2000) + (100*2000) = 550,000. Were n is the total
number of trucks in this case equals to 4. “i” and “j” stand for
the inbound and outbound doors, “m” and “n” represent the

inbound and outbound trucks. “ ” serves as the flow

between two trucks. “ represents the distance between two

doors. “ ” indicates whether truck “m” is assigned to door

“i” or not through taking a Boolean value either 0 or 1.

Similarly, “ ” determines whether truck “n” is assigned to

door “j”.

Obviously, the combination of the flow and distance has a
tremendous effect on the total cost. Therefore it is rational to
assume that if we assigned the trucks with the highest flow
between, on the doors separated with the least distance, we
would get an optimized solution. To explain this concept
further, consider the following figure Fig. 3 which represents a
different permutation of that given in Fig. 2 where all trucks
are assigned to different doors. For example, truck 4 was
assigned to door 1 instead of door 4. The reason behind this
reallocation is to assign trucks 1 and 2 that have the highest
flow amount between two new doors that have the largest
distance spanning them. This is completely the opposite of

what is given in Fig. 2 in which doors 1 and 2 with the shortest
separating distance were chosen. The cost of the new
permutation will be as follows: (300*3000) + (100*2000) +
(100*500) = 1,150,000 which is extremely greater than the
first cost which was 550,000 thus making no room for any
doubt regarding the logic that will be used as the building
block for the creation of the initial population.

Fig. 3. Truck-door assignment, second permutation.

B. Mathematical Formulation

The mathematical model of the Cross-dock Door
Assignment Problem is based on [1] and is as follows:

1. Parameters:

 M number of inbound trucks;

 N number of outbound trucks;

 I number of inbound doors;

 J number of outbound doors;

 fmn the flow between the inbound and outbound

trucks;

 dij distance between inbound and outbound

doors;

2. Decision Variables:

 xmi = 1 if inbound truck m is assigned to inbound

door i, else xmi = 0;

 ynj = 1 if outbound truck n is assigned to

outbound door j, else ynj = 0;

Minimize:

 (1)

Subject to: = 1 for m = 1, 2, …., M (2)

 = 1 for i = 1, 2, …, I (3)

 = 1 for j = 1, 2, …, J (4)

 = 1 for n = 1, 2, …., N (5)

 Xmi = 0 or 1 for all m, i

 Ynj = 0 or 1 for all n, j

Notice that (1) is the objective function or the cost.
Constraint (2) ensures that each inbound truck is assigned to
one inbound door. Constraint (3) ensures that each inbound
door is assigned one inbound truck. Constraint (4) ensures that
each outbound truck is assigned to one outbound door.
Constraint (5) ensures that each outbound door is assigned one
outbound truck.

Additionally, the above presentation is a bilinear program
with high complexity. Furthermore, it is a variant of the
Quadratic Assignment Problem making it an NP complete
problem [1].

IV. A CLASSICAL SCATTER SEARCH-BASED HEURISTIC

In his paper “A Template for Scatter Search and Path
Relinking” [13], the father of the Scatter Search Algorithm
Fred Glover defines it as an evolutionary method that
combines solutions in order to create new ones. Similarly, [14]
defines SS as a heuristic that creates initial solutions
“purposely” and not randomly, and then explores the
population in a systematical manner to produce new solutions
mainly through combination. Such technique is used for
solving combinatorial and nonlinear optimization problems
and has so far proven its effectiveness in doing so [15].

SS was first introduced by Fred Glover in 1977 and is
based on concepts of his work conducted in 1963 which
included methods that were related to combining decision
rules and problem constraints. These methods formulate the
building blocks for the combination of solutions in SS [16].

Additionally, Glover asserts that keeping a small
population of elite solutions, in the Reference Set, to be
combined and improved will aid in the process of shifting
towards the desired optimal solution space iteration after
iteration [14]. An illustration of SS algorithm is shown in Fig.
2.

Fig. 4. Scatter Search Template

In [16] an outline for the classical SS algorithm is

provided and is as follows:

1. Start by creating the initial population using the

Diversification Generation Method keeping in mind

the goal of maintaining diversity. The Improvement

method might be implemented at this stage to further

enhance the current solutions. Next, select the best of

these solutions present in the population and insert

them into the Ref Set using the Reference Set Update

Method. Notice that the best solutions does not mean

only those with the best cost or objective value, but

also include other solutions that have an undesired

cost but believed to play a role in maintaining

diversity.

2. Start the combination process through identifying the

subsets that are going to be combined. The Subset

Generation Method prepares these subsets and

delivers them to the Solution Combination Method

that will undertake the combination process based on

the linear combination of the combined solutions and

not through random selection. Again, after combining

a solution we need to improve the newly combined

one so we use the Improvement Method.

3. Select the best newly combined and improved

solutions to be added to the Ref Set. The selection

process of these best solutions should take into

consideration two factors, the cost of the solution

itself, and the level of diversity it embeds.

4. Repeat steps 2 and 3 until either reaching the

specified number of iterations or reaching the level in

which no change is occurring in the Ref Set.

V. THE PROPOSED ALGORITHM

Our SS heuristic adheres to the basic outline of the Scatter
Search Algorithm and has the following procedure which is
further detailed in the below subsections:

1. Diversification Generation Method: responsible for the

creation of the pool of diversified solutions and is

divided into two main phases.

2. Creating and Updating the Reference Set: This is a

sub-set of the initial pool. It consists of the elite

solutions of the starting pool. The Reference Set is

updated continuously when Combination and

Improvement is carried out. This is done through

replacing solutions in the Reference Set with better new

solutions produced after combination and improvement.

3. Subset Generation Method: responsible for preparing

the input solutions for the Combination Method. It is

created in its simplest form in which the Reference Set

is divided into pairs processed in order.

4. Combination Method: the input is the pairs from the

Subset Generation Method. The combination is done in

two phases detailed below.

5. Improvement Method: enhances intensification. It

depends on switching the doors of two trucks

randomly.

The detailed methods for the proposed SS heuristic are as

follows:

A. Diversification Generation Method (DGM)

This method is divided into two main phases. Phase I
which is the guided selection process that aims at creating an
elite initial solution. And Phase II which adds diversity to the
selection through the insertion of randomly created solutions.

1) DGM: Phase I

This phase of the method is based on a special technique
which will guide the selection process of the candidate
solutions. The technique is based on the following:

a) First, create a new matrix based on the given flow

matrix and has three elements for each index. The first

element is dedicated for the flow amount , the

second element is for m (inbound truck) and the last

element is for n (outbound truck). Then sort the newly

created matrix in ascending order based on the flow

amount . Use the same process to create a similar

matrix for the distance matrix. Notice that the cases in

which = = 0 are not included in the new distance

and flow matrices.

b) Second, divide horizontally each of the two matrices

into four equal sub-lists. Thus, now the focus will be on

eight sub-lists.

c) Third, randomly and without replacement, select an

index from the first flow sub-list and obtain its

contents; i.e., trucks m and n in addition to the flow

() residing on this index.

d) Forth, after identifying both trucks m and n we need to

determine which one of the following cases apply:

i. Case 1: both of the selected trucks have been

selected earlier and assigned to two doors.

Therefore, we should reselect two trucks again

(repeat the third step i.e. step 1.c).

ii. Case 2: both of the selected trucks have not been

selected yet, therefore not assigned any door. At

this stage, select randomly and without

replacement an index from the first distance sub-

list then determine doors i and j in addition to the

distance residing on this index. For the doors,

we are to encounter one out of two possibilities:

1. First, one or both of the selected doors have

been selected previously and assigned a

truck, hence the selection process should be

repeated –and keep doing so- until we get a

pair of doors that has not been assigned any

trucks yet.

2. Second, both of the selected trucks have not

been selected before, thus assign the chosen

pairs of trucks to those of selected doors i.e.

assign truck m to door i and truck n to door

j. It is crucial at this level to carry out some

procedures that make sure that the trucks

and doors are not selected again as such a

reselection will lead to the assignment of the

same truck to two different doors at the

same time, or assigning two different trucks

to the same door, thereafter breaking the

imposed constraints for the Assignment

Problem.

iii. Case 3: one of the two trucks has been selected

earlier. Do the following: First, mark up the door

that already holds truck m as door i. Then go

back to the four distance sub-lists and locate all

of the indexes that have door i as an element then

copy those indexes into a new matrix. Next,

select randomly an index from the newly created

matrix then identify doors i and j. Again, one of

two cases is to be encountered:

1. Both door i and j are already assigned trucks,

therefore the random selection of a new pair

of doors i and j should be repeated.

2. Second, one of the doors is free thus the

assignment of the unassigned truck to the

unassigned door can be done.

e) Repeat until all the trucks are assigned to all the

doors

2) DGM: Phase II

Still, in order to keep the Initial population diverse, we
decided to mix it with a random population that forms around
50% of the total pool size (i.e. 150 solutions).

B. Reference Set Creation

From the 300 candidates in the initial population there are
solutions with high costs, therefore being undesired ones, and
candidates with low cost creating excellent solutions. And
since Scatter Search is based on the concept of combining and
improving elite solutions instead of manipulating both bad and
good solutions, we are to create a mini-pool of outstanding
candidate solutions to perform the predefined procedures on.
This mini-pool is called the Reference Set and it contains from
twenty to thirty solutions selected using the Reference Set
Update Method. Such small pool will reduce the complexity
of calculations and the cost for performing them including
computational power and time.

C. Combination Method

Combination Method in SS is not limited to the
combination of only two solutions. It grants the combination
of up to five solutions simultaneously. In our algorithm, we
focused on the combination of two solutions at once,
performing improvement, and then moving to the next pair of
solutions already prepared by the Subset Generation Method
through simply selecting the next pair of solutions from the
Reference Set.

The outline of the Combination Method in our algorithm is
divided into two main phases. The first phase starts with
identifying the door that holds the same trucks in both
solutions. If applicable, then move them into a new solution
array. The solution array is incomplete and requires some
missing trucks to be assigned to the free doors. This is going
to take place in the second phase.

1) Combination: Phase I

Take the first pair of solution from the Subset Generation
Method (for simplicity call them solution 1 and solution 2)
then identify the doors that hold the same truck in both
solutions, i.e. a door i that is assigned the same truck m in both
solutions 1 and 2. After identifying these doors, we create a
new array for the combined solutions in which the trucks
common to doors are clearly identified, and so are the
remaining trucks and doors that are still free. Simultaneously,
create another list containing the trucks that are free.

2) Combination: Phase II

The free doors and trucks remaining from Phase I are
going to be assigned based on the following algorithm:

a) Start from the first/next element in the new combined

solution array.

b) Check if that door is free or already assigned a truck

from the first combination phase.

c) If it turned out that it is already assigned a truck then

move to the next element (door).

d) Else, if the door was not assigned, label it as door j then

select randomly either 1 or 2. These values stand for

whether we are going to choose solution 1 of the pair to

continue the process with, or continue with solution 2.

e) Let us assume solution 2 was selected, what we care

about in solution 2 is the truck number that resides on

the door j determined in step 4 (i.e. d).

f) Identifying truck n on door j in solution 2 is not enough

to finish the process and assign that truck to the free

door since it could be the case that this truck has been

already assigned to a door. If it was so, the following is

to be done:

1. Check the list the contains the free doors and

select randomly a truck from it.

2. After selecting the truck, assign it to the free door

j in the newly combined array.

3. Then, remove that truck from the list containing

the free trucks so that it would not be selected

again.

g) Else, if the truck was not assigned before:

1. Assign it to the free door j.

2. remove it from the list containing the free trucks.

h) If some elements (doors) are still free, repeat the

process starting from step 1

i) Else, in case all items were selected, then stop this

Combination process and add the newly combined

solution to an Intermediate Reference Set with solutions

1 and 2, then move to the next pair selected by the

Subset Generation Method to combine starting from

phase I.

D. Improvement Method

The Improvement Method in Scatter Search is again an
extremely important method specially when comes to the
intensification procedures that aim to further investigate a
current solution. During intensification, the elite solutions (in
our case those solutions from the Reference Set and the newly
combined ones that are found in the Intermediate Reference
Set) are being examined thoroughly. Therefore, intensification
is completely opposite to diversification. Diversification
focuses on exploring solutions that has not been discovered
before [17] [18].

Back to our program, the Improvement method was
implemented in its simplest form:

a) Start with the first / next solution in the Intermediate

Reference Set.

b) Choose a door i randomly and determine the truck m

assigned to it.

c) Choose another door j randomly and again determine

the truck n assigned to it.

d) Exchange the trucks selected, i.e. assign truck m to door

j and truck n to door i.

e) Calculate the cost.

f) Repeat this process thirty times for this solution then go

back to step one if still unimproved solutions, else

g) Stop the Improvement Method and call the Update

Reference Set Method that will select the best 30

solutions and create therefore the new Reference Set

h) After the new updated Reference Set is created, repeat

combination and improvement methods on each pair of

the Reference set and keep iterating until the iteration

number is fulfilled.

VI. EXPERIMENTAL RESULTS

We tested our SS algorithm on a set of five test cases; each of

these test cases has a different number of trucks. each instance

is written in a file of type DATA. Each file has 3 main

components. The first one is the size of the instance (i.e. N)

found in the first line of the file. Then comes the flow matrix

(N*N) followed by an empty line and after it comes the final

part which represents the distance matrix (N*N). Notice that

all the distance matrices are symmetric (e.g. if the distance

from door 5 to door 10 is 200 unit of measure, then the

distance from door 10 to door 5 is also 200 unit of measure).

The details of each of the five test cases are presented in

TABLE I.

TABLE I. DETAILS ABOUT THE FIVE INSTANCES

Test

Cases

Number

of trucks
Inbound

trucks

Outbound

trucks

Flow

range

Distance

range

TC 1 12 5 7
10 to

400

10 to

300

TC 2 24 10 14
7 to

500

10 to

310

TC 3 48 20 28
10 to

200

10 to

200

TC 4 96 45 51
5 to

300
5 to 300

TC 5 192 90 102
10 to

100

10 to

100

To further illustrate the above table consider the following

explanation for the first instance of size 12, i.e. there are 12

trucks to be assigned to 12 doors. 5 out of these 12 trucks are

inbound trucks and the remaining 7 trucks are outbound. The

flow quantities range from 10 to 400 (e.g. the flow from truck

1 to truck 9 is 10 and the flow from truck 2 to truck 9 is 400)

whereas the distance values range from 10 to 300.

Computation results of the 5 test cases are shown in TABLE II

which compares the results of the SS to those of the GA.

TABLE II. RESULTS FOR THE 5 TEST CASES

 SS GA

TC 1 -

Iterations:

1500

Total time 0:01:43.100 0:02:05.85

Best Cost 335300 333900

Time to best 0:00:07.07 0:00:01.85

Best at iter.#: 217 139

TC 2 -

Iterations:

1000

Total time 0:03:11.82 0:02:49.68

Best Cost 1,528,370 1,528,370

Time to best 0:00:40.68 0:01:12.02

Best at iter.#: 232 823

TC 3 -

Iterations:

1500

Total time 0:10:42.0 0:03:02.95

Best Cost 5,014,864 5,026,594

Time to best 0:09:47.18 0:02:59.18

Best at iter.#: 1358 1482

TC 4 -

Iterations:

1500

Total time 0:24:11.59 0:02:51.38

Best Cost 46,607,952 47,887,658

Time to best 0:23:24.64 0:02:38.45

Best at iter.#: 1453 1417

TC 5 -

Iterations:

Total time 1:28:31.66 0:30:58.01

Best Cost 7,773,033 7,806,548

1500/3000 Time to best 1:25:39.90 0:30:46.56

Best at iter.#: 1451 2985

The GA has a population of 200 chromosomes. Two

chromosomes are selected randomly. Crossover is performed

using a swipe window method. Next, Mutation is carried out

through a random selection of two trucks and then the

substitution of their doors. At this level four candidates are

present, the two parent chromosomes and the two offspring.

Only two candidates are to be returned back to the original

pool. The first is the best among them and the other is

randomly selected.

The SS algorithm and GA were both implemented using

VB.Net. Furthermore, the tests were carried out on a laptop

Pentium(R), dual-core CPU T4300- 2.10 GHz, and 2 GB

RAM with Windows Vista SP 1.

For each instance other characteristics are shown and also

compared such as the total time, best found cost, time taken to

find this best cost, and at which iteration the best known cost

was found. For the first problem set of size 12, the GA got a

better solution. Both SS and GA got the same best known

solution for problem size 24, still the SS found it in less time.

For the third problem of size 48, the fourth problem of size 96,

and the final problem of size 192, the SS found the best known

solutions. Therefore it is clear that the GA was performing

better or equal to the performance of the SS in small problem

sizes (less than 24) but the SS outperformed the GA in large

problem sizes although the computational time was longer.

Fig. 3. compares the best solution found of SS and GA

algorithm at each iteration of problem with size 12.

320000

370000

20 60 100 140 180 220

co
st

 =
 t

ra
ve

lin
g

d
is

ta
n

ce

iterations

SS

GA

 Fig. 3. Best solution-found at each iteration - problem size 12

The below figures, 4, 5 and 6 compares the results of SS and

GA algorithm regarding the best solution found at each

iterations of sizes 24, 96, and 192.

Fig. 5. Best solution-found at each iteration - problem size 96

Fig. 6. Best solution-found at each iteration - problem size 192

VII. CONCLUSION

Scatter Search is an evolutionary algorithm that has been
utilized to solve the assignment problem in cross-docking
inventory. The problem entails the distribution of inbound and
outbound trucks to the doors of the inventory in the best
manner possible so that the cost of transportation of goods and
items are minimized. Based on that, the methods of the SS
have been enhanced to solve this problem.

Mainly, the focus was on the Diversification Generation
Method. A unique method has been used to boost the quality
of the initial population, consequently, the quality of the
Reference Set. Clearly, this process affected the final results as
it aided in yielding the best known solution at earlier stages of

the iterations giving an edge when compared to other related
work and research that did not focus on generating such
enhanced solutions. Additionally, the Combination and
Improvement Methods have been also reinforced to give better
results.

The paper major contribution is through presenting and
testing a unique algorithm (SS) that has not been used before
for solving the assignment problem in cross-docks. The results
indicate that our algorithm SS-based outperformed other
researched algorithms.

REFERENCES

[1] L. Y. a. C.-H. C. Tsui, "An optimal solution to a dock door assignment
problem," Computers & Industrial Engineering, vol. 23, no. 1, pp. 283-
286, 1992.

[2] H. J. Carlo, Door assignment and sequencing problems in crossdocks and
container terminals, vol. 68, 2007.

[3] Y. A. a. H. J. C. Bozer, "Optimizing inbound and outbound door
assignments in less-than-truckload crossdocks," IIE Transactions, vol.
40, no. 11, pp. 1007-1018, 2008.

[4] U. a. A. A. Aickelin, "Simulation optimization of the crossdock door
assignment problem," in In: UK Operational Research Society
Simulation Workshop 2006 (SW06), Leamington Spa. (Unpublished).

[5] R. a. M. H. C. Bermúdez, "A genetic algorithm approach to door
assignments in breakbulk terminals," University of Arkansas, Mack-
Blackwell National Rural Transportation Study Center, 2001.

[6] F. B. T. a. F. S. Hazzoury, "Heuristic for Cross Dock Problem," École
Centrale de Lille, 2010.

[7] A. B. F. R. a. S. N. R. Arabani, "Applying Simulated Annealing
Algorithm for Cross-Docking Scheduling," In Proceedings of the World
Congress on Engineering and Computer Science, vol. 2, 2009.

[8] R. e. a. Larbia, "Scheduling of transhipment operations in a single strip
and stack doors crossdock," in Proceedings of the 19th International
Conference on Production Research, 2007.

[9] D. C. K. M. L. a. R. P. Agustina, "A Review: Mathematical Modles for
Cross Docking Planning," International Journal of Engineering Business
Management, vol. 2, no. 2, pp. 47-54, 2010.

[10] J. J. Bartholdi, a. K.R. Gue, "Reducing labor costs in an LTL
crossdocking terminal," Operations Research, vol. 6, no. 48, pp. 823-
832., 2000.

[11] K. R. Gue. a. J. J. Bartholdi, "The best shape for a crossdock,"
Transportation Science, vol. 38, no. 2, pp. 235-244, 2004.

[12] I. F. Vis, a. K. J. Roodbergen. "Positioning of goods in a cross-docking
environment," Computers & Industrial Engineering, vol. 54, no. 3, pp.
677-689, 2008.

[13] F. Glover, "A template for scatter search and path relinking," Artificial
evolution, p. Springer Berlin Heidelberg, 1998.

[14] M. Laguna and R. Marti, "SCATTER SEARCH," in Scatter search:
methodology and implementations in C, vol. 1, 2003.

[15] F. M. L. a. R. M. Glover, "Scatter search and path relinking: Advances
and applications," International series in operations research and
management science, pp. 1-36, 2003.

[16] F. M. L. a. R. M. Glover, "Fundamentals of scatter search and path
relinking," Control and cybernetics, vol. 39, no. 3, pp. 653-684, 2000.

 Fig. 4. Best solution found at each iteration - problem size 24

[17] F. Glover and M. Laguna, "Tabu Search," Boston: Kluwer academic
publishers, vol. 22, pp. 1-18, 1997.

[18]

[19]

Y. Rochat and É. D. Taillard, "Probabilistic diversification and
intensification in local search for vehicle routing," Journal of Heuristics,
vol. 1, no. 1, pp. 147-167, 1995.

Glover, F., M. Laguna and R. Martí. “Scatter Search”. Theory and
Applications of Evolutionary Computation: Recent Trends, A. Ghosh
and S. Tsutsui (Eds.) Springer-Verlag(2003).

	Coversheet of postprint
	Natural

