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Abstract—Cross-docking is a practice in logistics in which 

shipments are directly moved from an inbound truck into 

an outbound truck. A recognized problem in this domain 

is the assignment of trucks to doors in a way that the 

distance to be traveled between the doors is minimized. 

This problem is known as the Cross-Dock Door 

Assignment Problem (CDAP). A lot of research has been 

conducted regarding this topic still, up to our knowledge, 

none used Scatter Search (SS). In this paper, we 

implemented this evolutionary metaheuristic algorithm 

and tested it, then compared the results with those of 

another evolutionary algorithm, Genetic Algorithm (GA). 

The results indicate that the SS outperformed the GA. 

Keywords — Cross-docking, Door Assignment Problem, 

Scatter Search, Metaheuristics, Logistics. 

 

I. INTRODUCTION 

Cross-docking is a new model in logistics in which an 
inbound truck, usually with less-than-truckload (LTL) 
shipment, directly loads its cargo into a specified outbound 
truck without the need for temporary storage. In case storage 
was required, materials are stored for twenty four hours at 
maximum. In fact, this limited presence of storage will 
mitigate a cumbersome process common in traditional 
inventories. At some stages LTL shipments created a financial 
problem as it was causing losses. This loss is due to the 
violation of a basic economical concept known as the 
“economy of scale” which states that the truck is to be filled 
completely so that the expenses of shipping -which are fixed- 
will be divided on the items being shipped. Consequently, the 
main goal of the model is to sort and consolidate shipments 
from different suppliers into a fully loaded truck (LT) in an 
attempt to achieve economies of scale. An illustration of 
Cross-docking is shown in Fig. 1.  Fig.1. (a) shows the process 
inside a distribution center. Fig. 1. (b) shows the case when 
the truck is not fully loaded and thus the supplier will 
encounter a higher increase in the price. Fig. 1. (c) shows the 
creation of a hub in which shipments from different suppliers 
are sorted based on their destination and then consolidate into 
one fully loaded truck (LT) and then moved to the consumer 
thus achieving economy of scale.  

 

 
Fig. 1.   Process inside a Cross-dock (left); The Distribution Industry before 
and after the emergence of Cross-Docking (right) 

 

The decreased operational costs and improved response 
and delivery time made cross-docks a desirable practice for 
transportation and other similar industries. Still, with the fierce 
competition and low profit margins, cross-dock managers 
need to take actions on different decision levels to further 
increase effectiveness and efficiency. One crucial decision is 
to be taken at the operational level and is related to assigning 
trucks to doors. This problem is known as the Cross-dock 
Door Assignment Problem (CDAP) which is a 
nondeterministic polynomial time (NP)-complete problem. 
Such problems may be too computationally-intensive to find 
their exact solution. In these situations evolutionary 
techniques can be effective. In fact, due to their random 
nature, evolutionary algorithms are never guaranteed to find 
an optimal solution for any problem, but they will find a good 
solution if one exists.  

After reviewing the recent available literature related to the 
cross-docking, this paper proposes a novel evolutionary 
heuristic for solving the CDAP. Specifically, a Scatter Search 
(SS) algorithm is presented to solve this problem. In fact the 
selection of the SS algorithm was motivated by Glover’s 
perception [19] which states that “in contrast to other 
evolutionary methods like genetic algorithms, scatter search is 
founded on the premise that systematic designs and methods 
for creating new solutions afford significant benefits beyond 
those derived from recourse to randomization; further SS uses 

(a) 

   (b) 

(c) 



strategies for search diversification and intensification that 
have proved effective in a variety of optimization problems”.  
Thus, we presented Scatter Search (SS) algorithm and tested it 
with randomly generated input which simulates actual data in 
cross-docks with up to 192 doors. The goal is to minimize the 
traveling distance of the handling machines when moving 
cargo from an inbound truck to an outbound truck. The results 
of the SS are then compared to those of another evolutionary 
algorithm (Genetic Algorithm). The test cases results clearly 
indicate that the SS solutions outperformed those of the GA 
for problem sizes greater than 24.  

The rest of this paper is organized as follows. The next 
section is devoted for the literature review. Section 3 
represents the mathematical formulation. The Scatter Search-
based heuristic is discussed in details in Section 4. Then 
Section 5 presents the modified SS version. Section 6 presents 
the empirical results. Finally, the conclusion is found in 
Section 7. 

II. LITERATURE REVIEW 

fo e nO the leading studies in the domain of door 
assignment problem in cross-docking was carried out by Tsui 
and Chang in 1990. Later they improved their work through 
presenting a more advanced approach for the solution [1]. The 
problem formulation included fixed origin doors on one side 
of the cross-dock and fixed destination doors at the opposite 
side taking into consideration that the cross-dock shape is 
rectangular. The goal was to determine which of the doors are 
to be classified as destination doors, and which are to be 
classified as origin doors so that the travel time of the forklifts 
that move the shipments is minimized. They proposed a 
bilinear programming model with the usage of branch and 
bound algorithm.  

Other works [2] [3] focused on the assignment of the 
trucks to doors in a dynamic way in which both inbound and 
outbound doors are not fixed. This way, not only the material 
handling workload was minimized (i.e. the objective 
function), but also the congestion problem inside the terminal 
was mitigated. They presented their problem as a Mixed 
Integer Programming Model and used Simulated Annealing 
Algorithm to solve the model.  

Aickelin and Adewunmi [4] proposed a Memetic 
algorithm based on the combination of both Local Search and 
Genetic Algorithms. The aim of the model is to minimize the 
traveling distance of the handling vehicles. 

Bermudez [5] used Genetic Algorithm (GA) aiming at 
minimizing the weighted travel distance. The GA was then 
compared with a pair wise exchange algorithm. The results of 
the case studies showed an acceptable performance for the 
GA. The research also included an extensive study on the 
impact of parameter changes (especially those related to 
crossover and mutation) in the GA. 

Another known problem in the domain of cross-docking is 
the scheduling problem in which the sequence of trucks in a 
cross-dock is to be determined. Such arrangement is 
performed in order to decrease the time makespan therefore 
minimizing costs. In their paper, Hazzoury et al. [6] present a 
reformulation for the integer programming model that was 

introduced by Zhaowei Miao et al. The main objective of the 
research is minimizing the number of trucks that leave without 
being fully filled, and at the same time minimizes the 
operations cost related to the shipping process. 

Arabani et al. [7] used simulated annealing algorithm to 
schedule the arrival and departure of trucks at the cross-
docking terminal. They only discussed one case in which there 
is only one cross-docking terminal. 

Larbi et al. [8] proposed a graph based model to approach 
the transshipment scheduling problem with the goal of 
minimizing the cost. Transshipment operations are those 
related to: first, the cost resulting from storing certain items 
when their outbound truck is not available, second, the cost 
resulting from the move of the trucks from the doors to the 
parking zone and vice versa. The model was tested on a case 
of one outbound and one inbound door. 

Apart from scheduling and door assignment, Agustina et 
al. [9] covers almost all of the significant literature related to 
cross-docking in an impressive and comprehensive manner. 
They divided the highlighted biography into: first, those 
discussing the operational level in which short term decisions 
have to be taken, e.g. assignment and scheduling problems; 
second, the research focusing on the tactical level, e.g. those 
dealing with the layout of the cross-dock; third, those related 
to the strategic level such as determining the location of the 
cross-dock or number of vehicles in the network. 

Bartholdi and Gue [10] proposed a model for the layout of 
a cross-dock taking into consideration the door assignment 
problem. The main goal of the work is to change the layout of 
the inventory in order to reduce the labor cost through 
decreasing the traveling distance and congestions. One 
important outcoming was the suggestion of clustering high 
flow inbound doors with their relative outbound doors 
therefore decreasing the traveling distance, additionally, 
disperse these clusters among the cross-dock in an attempt to 
reduce congestion. They claim after implementing their model 
there was an increase in the productivity of the cross-dock by 
11%. Later Bartholdi and Gue [11] focused on another paper 
on the best physical shape for a cross-docking inventory. They 
reached a conclusion that the “I” shape is needed for cross-
docks with doors equal to or less than 150. And that shape “T” 
is adequate for those of size between 150 and 200. Finally, 
shape “X” is the best for inventories with more than 200 
doors. 

Additionally, Vis and Roodbergen [12] presented a model 
for the storage of products in a cross-dock. This model is 
designed for cases in which some items are to be stored for a 
short period of time until the outbound truck is available to 
load them out. They used a minimum cost flow problem 
model. 

III. CROSS-DOCKING DOOR ASSIGNMENT PROBLEM 

A. Preliminary  

With a fierce competition with rivals, transportation and 
logistics companies noticed a decrease in the profit margins if 
some of their trucks are not fully loaded. Accordingly, 
efficient and effective measures had to be taken at the 



operational level by assigning trucks to doors. The effect of 
such assignment is illustrated in the following example on 
cross-dock inventory. This example shows two different 
permutations to assign four trucks to four doors with their 
corresponding costs.   

The first permutation is illustrated in Fig. 2.  In this 
permutation, the four trucks 1, 2, 3, 4 are assigned to the 
corresponding four doors 1, 2, 3, 4.   

 
Fig. 2. Truck-door assignment, first permutation 

 
It has four trucks and four doors where trucks 1, 2, 3, and 4 

are assigned to doors 1, 2, 3, and 4 respectively. Fig. 2 clearly 
shows that trucks 1, 3, and 4 are inbound trucks, and truck 2 is 
an outbound truck. The blue numbers above each arrow 
represent the exact flow quantity between two trucks. For 
example, the flow quantity between trucks 1 and 2 is 300. As 
for the red numbers below the arrows, they represent the 
distance between the doors. In Fig. 2, the distance between 
door 1 and 2 is 500. It is important at this stage to mention that 
trucks 1 and 2 having the highest flow among them are 
assigned deliberately to doors 1 and 2 respectively, which in 
their turn have the smallest distance spanning them. The cost 
of such a permutation would be calculated as follows (this 
formula will be verified in the following section): 

(300*500) + 

(100*2000) + (100*2000) = 550,000. Were n is the total 
number of trucks in this case equals to 4. “i” and “j” stand for 
the inbound and outbound doors, “m” and “n” represent the 

inbound and outbound trucks. “ ” serves as the flow 

between two trucks. “  represents the distance between two 

doors. “ ” indicates whether truck “m” is assigned to door 

“i” or not through taking a Boolean value either 0 or 1. 

Similarly, “ ”  determines whether truck “n” is assigned to 

door “j”. 

Obviously, the combination of the flow and distance has a 
tremendous effect on the total cost. Therefore it is rational to 
assume that if we assigned the trucks with the highest flow 
between, on the doors separated with the least distance, we 
would get an optimized solution. To explain this concept 
further, consider the following figure Fig. 3 which represents a 
different permutation of that given in Fig. 2 where all trucks 
are assigned to different doors. For example, truck 4 was 
assigned to door 1 instead of door 4. The reason behind this 
reallocation is to assign trucks 1 and 2 that have the highest 
flow amount between two new doors that have the largest 
distance spanning them. This is completely the opposite of 

what is given in Fig. 2 in which doors 1 and 2 with the shortest 
separating distance were chosen. The cost of the new 
permutation will be as follows: (300*3000) + (100*2000) + 
(100*500) = 1,150,000 which is extremely greater than the 
first cost which was 550,000 thus making no room for any 
doubt regarding the logic that will be used as the building 
block for the creation of the initial population. 

 
Fig. 3. Truck-door assignment, second permutation. 

 

B. Mathematical Formulation 

The mathematical model of the Cross-dock Door 
Assignment Problem is based on [1] and is as follows: 

1. Parameters: 

 M number of inbound trucks; 

 N number of outbound trucks; 

 I number of inbound doors; 

 J number of outbound doors; 

 fmn the flow between the inbound and outbound 

trucks; 

 dij distance between inbound and outbound 

doors; 

2. Decision Variables: 

 xmi = 1 if inbound truck m is assigned to inbound 

door i, else xmi = 0; 

 ynj = 1 if outbound truck n is assigned to 

outbound door j, else ynj = 0;  

Minimize: 

 (1) 

Subject to:    = 1 for m = 1, 2, …., M (2) 

        = 1 for i = 1, 2, …, I    (3) 

       = 1 for j = 1, 2, …, J   (4) 

       = 1 for n =  1, 2, …., N  (5) 

      Xmi = 0 or 1  for all m, i 

       Ynj = 0 or 1   for all n, j 



Notice that (1) is the objective function or the cost. 
Constraint (2) ensures that each inbound truck is assigned to 
one inbound door. Constraint (3) ensures that each inbound 
door is assigned one inbound truck. Constraint (4) ensures that 
each outbound truck is assigned to one outbound door. 
Constraint (5) ensures that each outbound door is assigned one 
outbound truck. 

Additionally, the above presentation is a bilinear program 
with high complexity. Furthermore, it is a variant of the 
Quadratic Assignment Problem making it an NP complete 
problem [1]. 

IV. A CLASSICAL SCATTER SEARCH-BASED HEURISTIC 

In his paper “A Template for Scatter Search and Path 
Relinking” [13], the father of the Scatter Search Algorithm 
Fred Glover defines it as an evolutionary method that 
combines solutions in order to create new ones. Similarly, [14] 
defines SS as a heuristic that creates initial solutions 
“purposely” and not randomly, and then explores the 
population in a systematical manner to produce new solutions 
mainly through combination. Such technique is used for 
solving combinatorial and nonlinear optimization problems 
and has so far proven its effectiveness in doing so [15]. 

SS was first introduced by Fred Glover in 1977 and is 
based on concepts of his work conducted in 1963 which 
included methods that were related to combining decision 
rules and problem constraints. These methods formulate the 
building blocks for the combination of solutions in SS [16]. 

Additionally, Glover asserts that keeping a small 
population of elite solutions, in the Reference Set, to be 
combined and improved will aid in the process of shifting 
towards the desired optimal solution space iteration after 
iteration [14]. An illustration of SS algorithm is shown in Fig. 
2. 

 
Fig. 4. Scatter Search Template 

   

In [16] an outline for the classical SS algorithm is 

provided and is as follows: 
 

1. Start by creating the initial population using the 

Diversification Generation Method keeping in mind 

the goal of maintaining diversity. The Improvement 

method might be implemented at this stage to further 

enhance the current solutions. Next, select the best of 

these solutions present in the population and insert 

them into the Ref Set using the Reference Set Update 

Method. Notice that the best solutions does not mean 

only those with the best cost or objective value, but 

also include other solutions that have an undesired 

cost but believed to play a role in maintaining 

diversity. 
 

2. Start the combination process through identifying the 

subsets that are going to be combined. The Subset 

Generation Method prepares these subsets and 

delivers them to the Solution Combination Method 

that will undertake the combination process based on 

the linear combination of the combined solutions and 

not through random selection. Again, after combining 

a solution we need to improve the newly combined 

one so we use the Improvement Method.  
 

3. Select the best newly combined and improved 

solutions to be added to the Ref Set. The selection 

process of these best solutions should take into 

consideration two factors, the cost of the solution 

itself, and the level of diversity it embeds. 
 

4. Repeat steps 2 and 3 until either reaching the 

specified number of iterations or reaching the level in 

which no change is occurring in the Ref Set. 

V. THE PROPOSED ALGORITHM 

Our SS heuristic adheres to the basic outline of the Scatter 
Search Algorithm and has the following procedure which is 
further detailed in the below subsections: 

1. Diversification Generation Method:  responsible for the 

creation of the pool of diversified solutions and is 

divided into two main phases. 

2. Creating and Updating the Reference Set: This is a 

sub-set of the initial pool. It consists of the elite 

solutions of the starting pool. The Reference Set is 

updated continuously when Combination and 

Improvement is carried out. This is done through 

replacing solutions in the Reference Set with better new 

solutions produced after combination and improvement.  

3. Subset Generation Method: responsible for preparing 

the input solutions for the Combination Method. It is 

created in its simplest form in which the Reference Set 

is divided into pairs processed in order. 

4. Combination Method: the input is the pairs from the 

Subset Generation Method.  The combination is done in  

two phases detailed below.  



5. Improvement Method: enhances intensification. It 

depends on switching the doors of two trucks 

randomly. 

The detailed methods for the proposed SS heuristic are as 

follows: 

A. Diversification Generation Method (DGM) 

This method is divided into two main phases. Phase I 
which is the guided selection process that aims at creating an 
elite initial solution. And Phase II which adds diversity to the 
selection through the insertion of randomly created solutions. 

1) DGM: Phase I 

This phase of the method is based on a special technique 
which will guide the selection process of the candidate 
solutions. The technique is based on the following:  

a) First, create a new matrix based on the given flow 

matrix and has three elements for each index. The first 

element is dedicated for the flow amount , the 

second element is for m (inbound truck) and the last 

element is for n (outbound truck). Then sort the newly 

created matrix in ascending order based on the flow 

amount . Use the same process to create a similar 

matrix for the distance matrix. Notice that the cases in 

which = = 0 are not included in the new distance 

and flow matrices. 

b) Second, divide horizontally each of the two matrices 

into four equal sub-lists. Thus, now the focus will be on 

eight sub-lists. 

c) Third, randomly and without replacement, select an 

index from the first flow sub-list and obtain its 

contents; i.e., trucks m and n in addition to the flow 

( ) residing on this index. 

d) Forth, after identifying both trucks m and n we need to 

determine which one of the following cases apply: 

i. Case 1: both of the selected trucks have been 

selected earlier and assigned to two doors. 

Therefore, we should reselect two trucks again 

(repeat the third step i.e. step 1.c). 

ii. Case 2: both of the selected trucks have not been 

selected yet, therefore not assigned any door. At 

this stage, select randomly and without 

replacement an index from the first distance sub-

list then determine doors i and j in addition to the 

distance  residing on this index. For the doors, 

we are to encounter one out of two possibilities: 

1. First, one or both of the selected doors have 

been selected previously and assigned a 

truck, hence the selection process should be 

repeated –and keep doing so- until we get a 

pair of doors that has not been assigned any 

trucks yet. 

2. Second, both of the selected trucks have not 

been selected before, thus assign the chosen 

pairs of trucks to those of selected doors i.e. 

assign truck m to door i and truck n to door 

j. It is crucial at this level to carry out some 

procedures that make sure that the trucks 

and doors are not selected again as such a 

reselection will lead to the assignment of the 

same truck to two different doors at the 

same time, or assigning two different trucks 

to the same door, thereafter breaking the 

imposed constraints for the Assignment 

Problem. 

iii. Case 3: one of the two trucks has been selected 

earlier. Do the following: First, mark up the door 

that already holds truck m as door i. Then go 

back to the four distance sub-lists and locate all 

of the indexes that have door i as an element then 

copy those indexes into a new matrix. Next, 

select randomly an index from the newly created 

matrix then identify doors i and j. Again, one of 

two cases is to be encountered: 

1. Both door i and j are already assigned trucks, 

therefore the random selection of a new pair 

of doors i and j should be repeated.  

2. Second, one of the doors is free thus the 

assignment of the unassigned truck to the 

unassigned door can be done. 

e) Repeat until all the trucks are assigned to all the 

doors 

2) DGM: Phase II 

Still, in order to keep the Initial population diverse, we 
decided to mix it with a random population that forms around 
50% of the total pool size (i.e. 150 solutions). 

B. Reference Set Creation 

From the 300 candidates in the initial population there are 
solutions with high costs, therefore being undesired ones, and 
candidates with low cost creating excellent solutions. And 
since Scatter Search is based on the concept of combining and 
improving elite solutions instead of manipulating both bad and 
good solutions, we are to create a mini-pool of outstanding 
candidate solutions to perform the predefined procedures on. 
This mini-pool is called the Reference Set and it contains from 
twenty to thirty solutions selected using the Reference Set 
Update Method. Such small pool will reduce the complexity 
of calculations and the cost for performing them including 
computational power and time. 



C. Combination Method 

Combination Method in SS is not limited to the 
combination of only two solutions. It grants the combination 
of up to five solutions simultaneously. In our algorithm, we 
focused on the combination of two solutions at once, 
performing improvement, and then moving to the next pair of 
solutions already prepared by the Subset Generation Method 
through simply selecting the next pair of solutions from the 
Reference Set. 

The outline of the Combination Method in our algorithm is 
divided into two main phases. The first phase starts with 
identifying the door that holds the same trucks in both 
solutions. If applicable, then move them into a new solution 
array. The solution array is incomplete and requires some 
missing trucks to be assigned to the free doors. This is going 
to take place in the second phase. 

1) Combination: Phase I 

Take the first pair of solution from the Subset Generation 
Method (for simplicity call them solution 1 and solution 2) 
then identify the doors that hold the same truck in both 
solutions, i.e. a door i that is assigned the same truck m in both 
solutions 1 and 2. After identifying these doors, we create a 
new array for the combined solutions in which the trucks 
common to doors are clearly identified, and so are the 
remaining trucks and doors that are still free. Simultaneously, 
create another list containing the trucks that are free. 

2) Combination: Phase II 

The free doors and trucks remaining from Phase I are 
going to be assigned based on the following algorithm: 

a) Start from the first/next element in the new combined 

solution array. 

b) Check if that door is free or already assigned a truck 

from the first combination phase. 

c) If it turned out that it is already assigned a truck then 

move to the next element (door). 

d) Else, if the door was not assigned, label it as door j then 

select randomly either 1 or 2. These values stand for 

whether we are going to choose solution 1 of the pair to 

continue the process with, or continue with solution 2. 

e) Let us assume solution 2 was selected, what we care 

about in solution 2 is the truck number that resides on 

the door j determined in step 4 (i.e. d). 

f) Identifying truck n on door j in solution 2 is not enough 

to finish the process and assign that truck to the free 

door since it could be the case that this truck has been 

already assigned to a door. If it was so, the following is 

to be done: 

1. Check the list the contains the free doors and 

select randomly a truck from it. 

2. After selecting the truck, assign it to the free door 

j in the newly combined array. 

3. Then, remove that truck from the list containing 

the free trucks so that it would not be selected 

again. 

g) Else, if the truck was not assigned before: 

1. Assign it to the free door j. 

2. remove it from the list containing the free trucks. 

h) If some elements (doors) are still free, repeat the 

process starting from step 1 

i) Else, in case all items were selected, then stop this 

Combination process and add the newly combined 

solution to an Intermediate Reference Set with solutions 

1 and 2, then move to the next pair selected by the 

Subset Generation Method to combine starting from 

phase I. 

D. Improvement Method 

The Improvement Method in Scatter Search is again an 
extremely important method specially when comes to the 
intensification procedures that aim to further investigate a 
current solution. During intensification, the elite solutions (in 
our case those solutions from the Reference Set and the newly 
combined ones that are found in the Intermediate Reference 
Set) are being examined thoroughly. Therefore, intensification 
is completely opposite to diversification. Diversification 
focuses on exploring solutions that has not been discovered 
before [17] [18]. 

Back to our program, the Improvement method was 
implemented in its simplest form: 

a) Start with the first / next solution in the Intermediate 

Reference Set. 

b) Choose a door i randomly and determine the truck m 

assigned to it. 

c) Choose another door j randomly and again determine 

the truck n assigned to it. 

d) Exchange the trucks selected, i.e. assign truck m to door 

j and truck n to door i. 

e) Calculate the cost. 

f) Repeat this process thirty times for this solution then go 

back to step one if still unimproved solutions, else 

g) Stop the Improvement Method and call the Update 

Reference Set Method that will select the best 30 

solutions and create therefore the new Reference Set 

h) After the new updated Reference Set is created, repeat 

combination and improvement methods on each pair of 

the Reference set and keep iterating until the iteration 

number is fulfilled. 

VI. EXPERIMENTAL RESULTS 

We tested our SS algorithm on a set of five test cases; each of 

these test cases has a different number of trucks. each instance 

is written in a file of type DATA. Each file has 3 main 

components. The first one is the size of the instance (i.e. N) 



found in the first line of the file. Then comes the flow matrix 

(N*N) followed by an empty line and after it comes the final 

part which represents the distance matrix (N*N). Notice that 

all the distance matrices are symmetric (e.g. if the distance 

from door 5 to door 10 is 200 unit of measure, then the 

distance from door 10 to door 5 is also 200 unit of measure). 

The details of each of the five test cases are presented in 

TABLE I.  

TABLE  I. DETAILS ABOUT THE FIVE INSTANCES 

Test 

Cases 

Number 

of trucks 
Inbound 

trucks 

Outbound 

trucks 

Flow 

range 

Distance 

range 

TC 1 12 5 7 
10 to 

400 

10 to 

300 

TC 2 24 10 14 
7 to 

500 

10 to 

310 

TC 3 48 20 28 
10 to 

200 

10 to 

200 

TC 4 96 45 51 
5 to 

300 
5 to 300 

TC 5 192 90 102 
10 to 

100 

10 to 

100 

To further illustrate the above table consider the following 

explanation for the first instance of size 12, i.e. there are 12 

trucks to be assigned to 12 doors. 5 out of these 12 trucks are 

inbound trucks and the remaining 7 trucks are outbound. The 

flow quantities range from 10 to 400 (e.g. the flow from truck 

1 to truck 9 is 10 and the flow from truck 2 to truck 9 is 400) 

whereas the distance values range from 10 to 300. 

Computation results of the 5 test cases are shown in TABLE II 

which compares the results of the SS to those of the GA.  

TABLE  II.  RESULTS FOR THE 5 TEST CASES 

  SS GA 

TC 1 - 

Iterations: 

1500 

Total time 0:01:43.100 0:02:05.85 

Best Cost 335300     333900     

Time to best 0:00:07.07 0:00:01.85 

Best at iter.#: 217 139 

TC 2 - 

Iterations: 

1000 

 

Total time 0:03:11.82 0:02:49.68 

Best Cost 1,528,370 1,528,370 

Time to best 0:00:40.68 0:01:12.02 

Best at iter.#: 232 823 

TC 3 - 

Iterations: 

1500 

Total time 0:10:42.0 0:03:02.95 

Best Cost 5,014,864 5,026,594 

Time to best 0:09:47.18 0:02:59.18 

Best at iter.#: 1358 1482 

TC 4 - 

Iterations: 

1500 

Total time 0:24:11.59 0:02:51.38 

Best Cost 46,607,952 47,887,658 

Time to best 0:23:24.64 0:02:38.45 

Best at iter.#: 1453 1417 

TC 5 - 

Iterations: 

Total time 1:28:31.66 0:30:58.01 

Best Cost 7,773,033 7,806,548 

1500/3000 Time to best 1:25:39.90 0:30:46.56 

Best at iter.#: 1451 2985 

The GA has a population of 200 chromosomes. Two 

chromosomes are selected randomly. Crossover is performed 

using a swipe window method. Next, Mutation is carried out 

through a random selection of two trucks and then the 

substitution of their doors. At this level four candidates are 

present, the two parent chromosomes and the two offspring. 

Only two candidates are to be returned back to the original 

pool. The first is the best among them and the other is 

randomly selected. 

The SS algorithm and GA were both implemented using 

VB.Net. Furthermore, the tests were carried out on a laptop 

Pentium(R), dual-core CPU T4300- 2.10 GHz, and 2 GB 

RAM with Windows Vista SP 1. 

For each instance other characteristics are shown and also 

compared such as the total time, best found cost, time taken to 

find this best cost, and at which iteration the best known cost 

was found. For the first problem set of size 12, the GA got a 

better solution. Both SS and GA got the same best known 

solution for problem size 24, still the SS found it in less time. 

For the third problem of size 48, the fourth problem of size 96, 

and the final problem of size 192, the SS found the best known 

solutions. Therefore it is clear that the GA was performing 

better or equal to the performance of the SS in small problem 

sizes (less than 24) but the SS outperformed the GA in large 

problem sizes although the computational time was longer. 

Fig. 3. compares the best solution found of SS and GA 

algorithm at each iteration of problem with size 12. 
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   Fig. 3.  Best solution-found at each iteration - problem size 12 

The below figures, 4, 5 and 6 compares the results of SS and 

GA algorithm regarding the best solution found at each 

iterations of sizes 24, 96, and 192. 



 

 
Fig. 5.  Best solution-found at each iteration - problem size 96 

Fig. 6.  Best solution-found at each iteration - problem size 192 

VII. CONCLUSION 

Scatter Search is an evolutionary algorithm that has been 
utilized to solve the assignment problem in cross-docking 
inventory. The problem entails the distribution of inbound and 
outbound trucks to the doors of the inventory in the best 
manner possible so that the cost of transportation of goods and 
items are minimized. Based on that, the methods of the SS 
have been enhanced to solve this problem. 

Mainly, the focus was on the Diversification Generation 
Method. A unique method has been used to boost the quality 
of the initial population, consequently, the quality of the 
Reference Set. Clearly, this process affected the final results as 
it aided in yielding the best known solution at earlier stages of 

the iterations giving an edge when compared to other related 
work and research that did not focus on generating such 
enhanced solutions. Additionally, the Combination and 
Improvement Methods have been also reinforced to give better 
results. 

The paper major contribution is through presenting and 
testing a unique algorithm (SS) that has not been used before 
for solving the assignment problem in cross-docks. The results 
indicate that our algorithm SS-based outperformed other 
researched algorithms. 
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