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Abstract—Linear regression with shuffled labels is the 
problem of performing a linear regression fit on datasets 
whose labels are unknowingly shuffled with respect to 
their inputs. Such a problem relates to different 
applications such as genome sequence assembly, sampling 
and reconstruction of spatial fields, and communication 
networks. Existing methods are either applicable only to 
data with limited observation errors, work only for 
partially shuffled data, sensitive to initialization, and/or 
work only with small dimensions. This paper tackles this 
problem in its full generality using stochastic 
approximation, which is based on a first-order 
permutation-invariant constraint. We propose an optimal 
recursive algorithm that updates the estimate from the 
underdetermined function that is based on that 
permutation-invariant constraint. The proposed 
algorithm aims for per-iteration minimization of the mean 
square estimate error. Although our algorithm is sensitive 
to initialization errors, to the best of our knowledge, the 
resulting method is the first working solution for arbitrary 
large dimensions and arbitrary large observation errors 
while its computation throughput appears insignificant.  
Numerical simulations show that our method with 
shuffled datasets can outperform the ordinary least 
squares method without shuffling. We also consider a 
batch process to this problem where the datasets are 
independently available. The solution we propose is 
independent of initialization but requires that number of 
such datasets to be at least equal to the dimension of the 
unknown vector.   

Index Terms— Linear regression with shuffled labels, 
Shuffled linear regression, linear regression without 
correspondences, unlabelled sensing, stochastic 
approximation 

I. Introduction 

A linear regression setting can simply be described as 
follows: Given a regressor 𝑿 ∈ ℝ ×  and an observed 
dependent variable 𝒚 ∈ ℝ  such that 

𝒚 = 𝑿𝒘 + 𝜺 

where 𝒘 ∈ ℝ  is unknown, and 𝜺 ∈ ℝ  is considered 
as an unknown disturbance term, which is usually 
random and may be due to erroneous observation. The 
problem is to estimate 𝒘. Whenever 𝑿 is full-column 
rank and elements of 𝑿 and 𝜺 are uncorrelated, then one 
solution is the commonly used ordinary least squares, 
which is given 𝒘 = (𝑿 𝑿) 𝑿 𝒚. 

In this paper we address the problem of shuffled linear 
regression where the elements of the observation 𝒚 is 
unknowingly shuffled, that is, the mutual ordering 
between 𝑿𝒘 and 𝒚 is unknown. This problem is also 
known as linear regression with shuffled data, linear 
regression without correspondences, unlabeled sensing 
or permuted linear model [1]. The setting of the shuffled 
linear regression is presented as follows. Consider the 
following equation  

                               𝒚 = 𝑴𝑿𝒘 + 𝒆                           (1) 

where 𝒚 ∈ ℝ , 𝒘 ∈ ℝ , 𝑿 ∈ ℝ × , 𝑴 is an unknown 
permutation matrix, and 𝒆 ∈ ℝ  is an additive error.  
There are many applications that directly relates to (1) 
such as in genome sequence assembly [2], sampling and 
reconstruction of spatial fields [3], multi-target tracking 
[4], and Internet-Of-Things networks [5]. In addition, 
this problem also relates to weakly-supervised machine 
learning [6]. However, this class of problem is an NP-
hard problem [7], makes linear regression task 
considerably harder even in absence of observation 
errors. Nonetheless, using arguments from coding 
theory, it is shown that if 𝑿 is iid Gaussian, it is possible 
to recover every 𝒘 uniquely with probability 1 if and 
only if 𝑛 ≥ 2𝑑 [8]. The work in [8] indicates that there 
is a possible recovery of 𝒘 but do not deal with 
designing an estimation algorithm. One approach to 
solve this problem (with 𝒆 = 𝟎) is by using brute force. 
That is, for each possible permutation 𝑴 among the 𝑛! 
permutations of the 𝑛 entries of 𝒚; check whether the 
linear system 𝑴 𝒚 = 𝑿𝒘 is consistent to solve, which 
is prohibitively complex algorithm in large dimensional 
problems, and of complexity 𝑂(𝑑 (𝑛 + 1)!) [1]. Other 
method is proposed with lesser complexity but may 
most likely fails in presence of any substantial 
observation errors [9]. A lower bound of the Signal-to-
Noise Ratio (SNR) is also established in [9], below 
which any estimation would lead to a large estimation 
error. On the other hand, it is shown [10] that only if the 
SNR exceeds a certain threshold, then the estimation 
coincides with high probability with the Maximum 
Likelihood Estimator (MLE), 𝑴 , 𝒘 =

argmin
𝑴 ,𝒘

‖𝑴 𝒚 − 𝑿𝒘‖ . The work in [6] tackles solving 

this MLE problem by an alternating minimization 
mechanism. Given an estimate 𝒘, compute 𝑴  by 
using the Metropolis-Hastings sampling technique on a 



Markov Chain defined over the set of permutation, then 
sort 𝒚 accordingly, and estimate 𝒘 using the ordinary 
least squares technique. This process is repeated several 
times. As mentioned in [1], the approach in [6] seems 
to be predominant but is very sensitive to initialization 
and generally works only for partially shuffled data. 
Another effective approach, e.g., used in [1] and [11], 
is based on an algebraic geometric approach, which 
uses symmetric polynomials to extract permutation-
invariant constraints that 𝒘 must satisfy. In particular, 
∑ (𝒙 𝒘) = ∑ 𝑦 , 𝑘 = 1,2, … , 𝑑, where 𝒙  is the 
𝑖  row of 𝑿 and 𝑦  is the 𝑗  element of 𝒚. This leads 
to a polynomial system of 𝑑 equations with 𝑑 
unknowns. The proposed algorithmic solution of 
solving the polynomial set employs its most appropriate 
root as initialization to the Expectation-Maximization 
algorithm [1]. This approach yielded an efficient 
solution for small values of 𝑑. However, this 
polynomial-based approach may never be able to tackle 
large values of 𝑑, because even if the nominal solution, 
𝒘, is used with 𝒆 = 0, the computation of the 
polynomial, e.g., the term ∑ (𝒙 𝒘) − ∑ 𝑦 , can 
diverge only due to numerical errors.  
Existing methods are either applicable only to data with 
limited observation errors, work only for partially 
shuffled data, sensitive to initialization, and/or limited 
to smaller dimensions, e.g., partially shuffled data. 

In this paper we propose an optimal recursive algorithm 
that updates the estimate of 𝒘, 𝒘 , that attempts to find 
zeroes of the underdetermined function, 𝑓(𝒘) =
∑ (𝒙 𝒘) − ∑ 𝑦 . 𝑓(𝒘) is associated with the 
first-order permutation-invariant constraint. This 
recursive algorithm is driven by 

                 𝑓(𝒘 ) = ∑ 𝒙 𝒘 − ∑ 𝑦 ,                (2)  

and assumes zero-mean white observation errors with 
arbitrary covariance norm. The optimality is in the 
sense of minimizing the covariance of the estimation 
error, 𝒘 − 𝒘 . The approach is inspired by the work in 
[12]. We show that the variance of 𝑓(𝒘 ) =
∑ 𝒙 𝒘 − ∑ (𝒚 − 𝑴 𝒆)  convergences to zero 
regardless the size of the covariance of 𝒆. Since this 
approach solves an underdetermined equation, then it is 
sensitive to initialization errors. We propose an initial 
guess 𝒘  that assumes small variations in elements of 
𝒘. We numerically compare the performance of our 
proposed algorithm with the ordinary least squares 
without shuffling while considering high dimensions of 
𝒘 large observation errors. Furthermore, we consider a 
variation of the problem, where the datasets 𝑿 and 𝒚 in 
(1) are available, not necessarily possessing the same 
length, 𝑛. We show that if 𝑑 of such datasets are 
provided, then an estimate of 𝒘 can be effectively 
evaluated without the need of initialization. In addition, 

we show that the influence of observation errors can be 
reduced using averaging.  

The rest of the paper is organized as follows. The 
proposed recursive algorithm and its convergence are 
presented in Section II. We formulate the batch process 
and propose a solution in Section III. We provide 
illustrative examples in Section IV. The proposed initial 
guess and our examples are also included in Section IV. 
Finally, a conclusion is given in Section V.   

Notations:  Throughout this paper, non-bold lower-case 
letters are used to denote scalars, bold lower-case letters 
denote vectors, and upper-case bold letters denote 
matrices, unless defined otherwise. We denote by 𝑰 the 
identity matrix, 0 the zero matrix, and 𝟏 =
[1 1 ⋯ 1] ∈ ℝ . 𝔼[.] the expectation operator, 
and  .tr  is the trace operator. 𝜆(𝑴) is the eigenvalues 

of 𝑴. 𝑴 ≻ 𝟎 and 𝑴 ≽ 𝟎 denote the cases that 𝑴 is 
positive and semi-positive definite matrix, respectively. 

II. Proposed recursive algorithm 

We consider the following: 

                  𝑓(𝒘) = 𝟏 𝒚 − 𝑿𝒘 − 𝒆𝒑                      (3) 

where 𝒆𝒑 = 𝑴 𝒆. The above equality is based on the 
facts that 𝟏 𝑴 = 𝟏 𝑴 = 𝟏  and 𝑴 𝑴 = 𝑰. The 
gradient, 𝒈 ∈ ℝ × , of 𝑓(𝒘), is 𝒈 = −𝟏 𝑿. We 
propose the following update algorithm 

                      𝒘 = 𝒘 − 𝒈 𝜅 𝑓(𝒘 )                 (4) 

where 𝑓(𝒘 ) = 𝟏 (𝒚 − 𝑿𝒘 ), and the step size or 
gain 𝜅 ∈ ℝ. The recursive algorithm (4), which is 
inspired by the algorithm proposed in [12], yields 

𝑓(𝒘 ) = 𝟏 𝒚 − 𝑿𝒘 + 𝑿𝒈 𝜅 𝑓(𝒘 )  

Since 𝟏 𝑿 = −𝒈, then the above leads to 𝑓(𝒘 ) =

𝟏 (𝒚 − 𝑿𝒘 ) − 𝒈𝒈 𝜅 𝑓(𝒘 ) or 

                 𝑓(𝒘 ) = (1 − 𝒈𝒈 𝜅 )𝑓(𝒘 )              (5) 

Define 𝒘∗ is such that  𝑓(𝒘∗)|𝒆𝒑
= 0 or by extracting 

the observation errors from 𝒚, we have 𝟏 (𝑴 𝒚 −

𝑴 𝒆) = 𝟏 𝒚 − 𝒆𝒑 = 𝟏 𝑿𝒘∗ or 𝟏 𝒚 = 𝟏 𝑿𝒘∗ +

𝟏 𝒆𝒑. It is important to reiterate that for 𝑑 > 1, 𝒘∗ is 
not unique. That is, there exist infinite 𝒘∗ such that 
𝑓(𝒘∗)|𝒆𝒑

= 0. Let the estimate error, 𝜹 ≜ 𝒘∗ − 𝒘 . 

Using (4), we have 𝜹 = 𝒘∗ − 𝒘 + 𝒈 𝜅 𝑓(𝒘 ) or 
𝜹 = 𝜹 + 𝒈 𝜅 𝑓(𝒘 ). Inserting 𝟏 𝒚 = 𝟏 𝑿𝒘∗ +

𝟏 𝒆𝒑 into 𝑓(𝒘 ) = 𝟏 (𝒚 − 𝑿𝒘 ), we get 𝑓(𝒘 ) =

𝟏 𝑿𝜹 + 𝟏 𝒆𝒑. Thus, 𝜹 = 𝜹 + 𝒈 𝜅 𝟏 𝑿𝜹 +

𝒈 𝜅 𝟏 𝒆𝒑, and with 𝒈 = −𝟏 𝑿, we obtain 

             𝜹 = (𝑰 − 𝒈 𝜅 𝒈)𝜹 + 𝒈 𝜅 𝟏 𝒆         (6) 



Since 𝔼[𝒆] = 𝟎 ⇒ 𝔼 𝒆 = 𝟎 and (6) is a linear 
recursive equation, then 𝔼[𝜹 ] = 𝟎 provided that 
𝔼[𝜹 ] = 𝟎. We define the covariance of 𝜹  as 𝑷 ≜
𝔼[𝜹 𝜹 ] and 𝚽 ≜ 𝑰 − 𝒈 𝜅 𝒈. We assume: 

(A1) 𝟏 𝑿 ≠ 𝟎 

(A2) 𝔼[𝜹 ] = 𝟎, 𝑷 ≻ 𝟎, 𝑅 = 𝔼 𝟏 𝒆 𝒆 𝟏 > 0 and 

𝔼 𝜹 𝒆 = 𝟎. Note that 𝑅 = 𝟏 𝔼[𝒆𝒆 ]𝟏  since 
𝟏 𝑴 = 𝟏 𝑴 = 𝟏 . 

Theorem 1. Let (3) satisfy Assumptions (A1)–(A2) and 
the algorithm (6) be applied. The gain 𝜅  that 
minimizes the mean-square of 𝛅  at each kth instant is 
given in the following recursive algorithm ∀𝑘 ∈ ℕ, 

                   𝑷 = 𝚽 𝑷 𝚽 + 𝒈 𝜅 𝑅𝜅 𝒈           (7) 

              𝜅 = (𝒈𝒈 ) 𝒈𝑷 𝒈 (𝒈𝑷 𝒈 + 𝑅)       (8) 

Proof of Theorem 1. Making use of (A2), (6) leads to 

                   𝑷 = 𝚽 𝑷 𝚽 + 𝒈 𝜅 𝑅𝜅 𝒈            

Expanding (7), we obtain 

𝑷 = 𝑷 − 𝑷 𝒈 𝜅 𝒈 − 𝒈 𝜅 𝒈𝑷
+ 𝒈 𝜅 𝒈𝑷 𝒈 𝜅 𝒈 + 𝒈 𝜅 𝑅𝜅 𝒈 

Collecting terms 

𝑷 = 𝑷 − 𝑷 𝒈 𝜅 𝒈 − 𝒈 𝜅 𝒈𝑷 + 𝒈 𝜅 (𝒈𝑷 𝒈
+ 𝑅)𝜅 𝒈 

Since 𝑷  is positive definite, then in order to 
minimize tr(𝑷 ) with respect to 𝜅 , we set 
𝜕tr(𝑷 ) 𝜕𝜅⁄ ≡ 𝟎 at each iteration, 

𝜕tr(𝑷 )

𝜕𝜅
= 2𝒈𝒈 𝜅 (𝒈𝑷 𝒈 + 𝑅) − 2𝒈𝑷 𝒈 ≡ 𝟎 

Thus, 𝜅 = (𝒈𝒈 ) 𝒈𝑷 𝒈 (𝒈𝑷 𝒈 + 𝑅) .           □ 

Corollary 1. lim
→

𝑓(𝒘 ) = 0 and lim
→

𝜅 = 0. 

Proof. Inserting (8) in (5), we have 𝑓(𝒘 ) =

𝛾 𝑓(𝒘 ) where  𝛾 ≜ 1 − 𝒈𝑷 𝒈 (𝒈𝑷 𝒈 + 𝑅) . 
Thus, 𝑓(𝒘 ) = 𝛾 𝑓(𝒘 ). Since 𝒈𝑷 𝒈 > 0 and 𝑅 >

0, then 0 < 𝛾 < 1, ∀𝑘 and lim
→

𝑓(𝒘 ) = 0. Equation 

(5) implies that lim
→

(1 − 𝒈𝒈 𝜅 ) = 0 and since 

𝒈𝒈 ≠ 0, lim
→

𝜅 = 0.                                                □   

Remark 1. In applications, (A1) and (A2) may not be 
exactly satisfied. Thus, 𝑷  (7) would not be optimal and 
could be larger than the actual error covariance matrix. 
To offset such an issue and subsequently not to drive 𝜅  
to zero too fast, it is recommended to use instead of (7) 

           𝑷 = 𝚽 𝑷 𝚽 + 𝒈 𝜅 𝑅𝜅 𝒈 + 𝛼 𝑰        (9) 

where it is recommended to have the tuning parameter, 
𝛼 , satisfying  0 ≤ 𝛼 ≪ 1.                                                    □ 

We next consider 𝑓(𝒘 ) = 𝟏 𝒚 − 𝑿𝒘 − 𝒆𝒑 =

𝑓(𝒘 ) − 𝟏 𝒆𝒑, and using (4), we have  

𝑓(𝒘 ) = 𝟏 𝒚 − 𝑿𝒘 + 𝑿𝒈 𝜅 𝑓(𝒘 ) − 𝒆𝒑  

Inserting 𝑓(𝒘 ) = 𝑓(𝒘 ) + 𝟏 𝒆𝒑, we obtain 

𝑓(𝒘 ) = 𝟏 𝒚 − 𝑿𝒘 + 𝑿𝒈 𝜅 𝑓(𝒘 )

+ 𝑿𝒈 𝜅 𝟏 𝒆𝒑 − 𝒆𝒑  

Using (3) and 𝒈 = −𝟏 𝑿, 𝑓(𝒘 ) = 𝟏 𝒚 − 𝑿𝒘 −

𝒆𝒑 , and collecting terms yield 

 𝑓(𝒘 ) = (1 − 𝒈𝒈 𝜅 )𝑓(𝒘 ) − 𝒈𝒈 𝜅 𝟏 𝒆𝒑   (10) 

Corollary 2. If 𝔼[𝑓(𝒘 )] = 0, then the covariance of 
𝑓(𝒘 ),  𝑄 ≜ 𝔼[𝑓 (𝒘 )], tends to zero as 𝑘 → ∞. 

Proof of Corollary 2. Inserting (8) in (10), we have 

𝑓(𝒘 ) = 𝛾 𝑓(𝒘 ) − (1 − 𝛾 )𝟏 𝒆𝒑 

where 𝛾 ≜ 1 − 𝒈𝑷 𝒈 (𝒈𝑷 𝒈 + 𝑅) . We define 
𝑄 ≜ 𝔼[𝑓(𝒘 )𝑓 (𝒘 )]. Thus,  

𝑄 = 𝛾 𝑄 + (1 − 𝛾 ) 𝑅 

Iterating 𝑄 , we get 

                             𝑄 = 𝑄 , + 𝑄                         (11) 

where  𝑄 , = ∏ 𝛾 𝑄  and 𝑄 =

∑ ∏ γ (1 − 𝛾 ) 𝑅, where ∏ 𝛽 = 1.  
We have 0 < 𝛾 < 1, ∀𝑘 and if lim

→
𝛾 = 1, then 

lim
→

𝒈𝑷 𝒈 = 0 and since 𝑷 ≻ 0, this implies 

lim
→

𝑷 = 𝟎, which means the ultimate problem is 

solved. Therefore, we assume that lim
→

𝛾 < 1. 

Therefore, lim
→

𝑄 , = 0. Next, we show that lim
→

𝑄 =

0 by showing that every term in the series converges to 
zero.  

Denote Ω , ≜ ∏ γ (1 − 𝛾 ) 𝑅. Consider 

 lim
→

∑ Ω , = ∑ lim
→

Ω , = ∑ lim
→

Ω , + 

{the infinitely many terms in the series corresponding 
to 𝑙 → ∞}. The infinitely many terms are zero since 
lim
→

Ω , = 0, and for the same reason we have 

∑ lim
→

Ω , = 0.                                                       □ 

Remark 2. Corollary 2 assumes that 𝔼[𝑓(𝒘 )] = 0 or 
𝔼[𝑓(𝒘 )] = 𝔼[𝟏 𝒚] − 𝔼[𝟏 𝑿𝒘 ] − 𝔼[𝟏 𝒆𝒑] = 0.  
Since 𝔼[𝟏 𝒆𝒑] = 0, then  𝔼[𝟏 𝒚] = 𝔼[𝟏 𝑿𝒘 ].  One 
direction for selecting 𝒘  is proposed in example of the 
subsequent section.                                                       □ 
Many techniques used in the proofs are inspired by the 
work done in [13], [14] and [15]. 



III. A batch process consideration 

The entire dataset in an application may involve having 
different independent subdatasets satisfying (1) as 
follows 

                               𝒚 = 𝑴 𝑿 𝒘 + 𝒆                            (12) 

where 𝒚 ∈ ℝ , 𝒘 ∈ ℝ , 𝑿 ∈ ℝ × , 𝑴  is an 
unknown permutation matrix, and 𝒆 ∈ ℝ  is an 
additive error, where 𝑙 ≥ 𝑑 and 𝑛 ≥ 1.  
Since 𝟏 𝒚 = 𝟏 𝑿 𝒘 + 𝟏 𝒆 , then the latter can be 

written as 𝑆
𝒚

= 𝑆
𝒙

𝑆
𝒙

⋯ 𝑆
𝒙

𝒘 + 𝑆𝒆, where 

𝑆 = ∑ 𝑧 , and, 𝒙 , in 𝑆
𝒙

 is the 𝑗  column of 𝑿 .  

                                  𝝃 = 𝚵𝒘 + 𝝐                             (13) 

where the 𝑖  element of 𝝃 ∈ ℝ  and 𝒆 ∈ ℝ  is 𝑆𝒚 and 
𝑆𝒆, respectively, and 𝑗  row of 𝚵 ∈ ℝ ×  is 
𝑆

𝒙
𝑆

𝒙
⋯ 𝑆

𝒙 . If 𝚵 is a full column-rank, then 
by using ordinary least squares, we can have an estimate 
independent of initialization  

                             𝒘 = (𝚵 𝚵) 𝚵 𝝃                        (14) 

Of note, If the elements of 𝑿  are real and iid, then 𝑆𝒙  

is real and iid and (since 𝑙 ≥ 𝑑) 𝚵 is full-column rank 
with probability 1. In case 𝒆 ≅ 𝟎, then the least of 
amount of data required to uniquely recover 𝒘 is 
whenever 𝑙 = 𝑑 and 𝑛 = 1, where in this case 𝒘 =
𝚵 𝝃. If 𝑛 = 1, then the solution becomes the one of 
ordinary least squares without shuffling. However, 
whenever 𝒆 ≇ 𝟎 and 𝑛  is not large enough and in order 
to make the estimate (14) less sensitive to observation 
errors, we need 𝑙 ≳ 2𝑑. The accuracy of 𝒘 depends on 
the variance of 𝒆 . In what follows, we propose a 
method that can reduce the effect of 𝒆  on 𝒘 with 𝑙 ≥
2𝑑. For each 𝑑 independent set of observations with any 
length 𝑛 ≥ 1, we have (12) a 𝑘  estimate 

                               𝒘 = (𝚵 𝚵 ) 𝚵 𝝃                      (15)   

We consider the nominal value to be the one associated 
with (13) using any of the 𝑘  estimates while 
compensating for observation errors, that is 

                          𝒘 = (𝚵 𝚵 ) 𝚵 𝝃 − 𝝐𝚵                   (16) 

where 𝝐𝚵 = (𝚵 𝚵 ) 𝚵 𝝐 . Since 𝑿 and 𝒆 are 
uncorrelated, then 𝚵  or (𝚵 𝚵 ) 𝚵  and 𝝐  are as well. 
Thus, 𝔼[(𝚵 𝚵 ) 𝚵 𝝐 ] = 𝔼[(𝚵 𝚵 ) 𝚵 ]𝔼[𝝐 ] and 
since 𝔼[𝒆 ] = 0, then 𝔼[𝝐 ] = 0 and 𝔼 𝝐𝚵 = 0. In 
addition, since 𝒘 is deterministic, then 𝒘 = 𝔼[𝒘] =

𝔼[(𝚵 𝚵 ) 𝚵 𝝃 ] − 𝔼 𝝐𝚵  or 𝒘 = 𝔼[(𝚵 𝚵 ) 𝚵 𝝃 ]. 
Consequently, 𝒘 = 𝔼[𝒘 ]. Without loss of generality, 
we assume 𝑙 = 𝑚𝑑, where the integer 𝑚 ≫ 2, then  

                              𝒘 ≈ ∑ 𝒘                            (17)  

We can use 𝒘 as 𝒘  and use optimal recursive 
approach   

IV. Numerical simulations 

In this section, we provide two examples. The first 
example illustrates the performance of the proposed 
algorithm in (4), (7) and (8). Based on the datasets 
under consideration, we provide for 𝒘 , The second 
example illustrates the proposed approach while 
considering a batch process presented in Section III. 

Example 1 

The choice of initial guess is thought to be rather critical 
for any practical estimation of such underdetermined 
system of equations (1). However, in order to show the 
capability of the proposed algorithm in (4), (7) and (8) 
rejecting observation errors, in our example we set all 
the elements of the actual 𝒘 to 1 in the first 3 scenarios 
and consider fluctuations in the elements of 𝒘 in the 
fourth. We assume that the error, 𝒆, is uniformly 
distributed, whose entries are drawn from 𝒰(0, 𝜎 ); 
here the mean and variance of the uniformly distributed 
random variable are equal to 0 and 𝜎 , respectively. In 
this example we draw the elements of 𝑿 from 𝒰(0,1). 
The permutation matrix, 𝑴, is chosen at random from 
the set of all 𝑛 × 𝑛 permutation matrices.  
Our initial guess, 𝒘𝟎, is based on the following: 
Equation (1) implies that ∑ (𝒚) = ∑ (𝑴𝑿𝒘) +
∑ (𝒆)   where the operator (. )  is the 𝑖  element of 
its argument vector. Since  𝑴 is a permutation matrix, 

then ∑ (𝑴𝑿𝒘) = ∑ (𝑿𝒘) . Thus, ∑ (𝒚) =

∑ (𝑿𝒘) + ∑ (𝒆) . Since 𝔼[𝒆] = 0 ⇒

lim
→

∑ (𝒆) = 0, then for 𝑛 ≫ 1, we have 

∑ (𝒆) ≅ 0 and ∑ (𝒚) ≅ ∑ (𝑿𝒘) . 

Consequently, we set our initial guess 

                𝒘 ≡ ∑ (𝑿⋕) ∑ (𝒚) 𝟏                 (18) 

where 𝑿⋕ = (𝑿 𝑿) 𝑿 . If 𝒘 ≡ ∑ (𝑿⋕𝒚) 𝟏  is 

used instead of (18), then similar results are obtained. 
This initial guess can fail if the fluctuations of the 
elements in the columns of 𝑿 or 𝒘 around their non-
zero means is large. However, it is adopted to illustrate 
the robustness of the proposed algorithm to high levels 
of observation errors and high dimensionality of 𝒘.  
We set the parameters used in the recursive algorithm 
(8) and (9) as follows: 𝑷 = 𝑰 , 𝛼 = 0.1, and  𝑅 =
2𝑛𝜎 . The adequate value for 𝑅 = 𝑛𝜎 ; however, an 
erroneous model is used to show the robustness of the 
algorithm. It turns out that both values result almost in 
the same convergence rate, which is about 12 iterations 
to drive  𝑓(𝒘 ) < 10 .  We compare the estimation 
of our proposed algorithm with those weights estimated 



by ordinary least squares before shuffling the labels, 
that is, 𝒘 = 𝑿⋕𝑴 𝒚. For each point in the 
experiments we conduct 1,000 different run and take 

the average of the obtained relative errors, 
‖𝒘 𝒘‖

‖𝒘‖
.  

Scenario 1.  
We hold 𝑑 = 50 and 𝑛 = 2𝑑 while varying the 
standard deviation of the observation error, 𝜎, between 
0 and 5. The relative errors are shown in Fig. 1. We find 
that the relative error increases from 6.0 × 10  to 
4.7 × 10  using the proposed algorithm; and increases 
from 4.6 × 10  to 6.9 × 10  using least squares 
without shuffling. This shows the ability of the 
proposed algorithm rejecting erroneous observations 
with significantly large values. 

 
Fig. 1. Example 1, Scenario 1: 𝑑 = 50 and 𝑛 = 2𝑑. 

Scenario 2.  
We hold 𝜎 = 1 and vary 𝑑 from 2 to 100 with 𝑛 = 2𝑑. 
The corresponding results are depicted in Fig. 2. The 
relative error decreases from 1.5 × 10  to 4.4 × 10  
using the proposed algorithm; and decreases from 
5 × 10  to 1 × 10  using least squares without 
shuffling. A significantly better improvement in 
performance is obtained using the proposed algorithm 
when increasing the dimension of the weight.  

 
Fig. 2. Example 1, Scenario 2: 𝜎 = 1 and 𝑛 = 2𝑑. 

Scenario 3.  
We hold 𝑑 = 50 and 𝜎 = 1 while varying 𝑛 while 100 
to 1,000. The results of the relative errors are shown in 
Fig. 3. The relative error decreases from 1.2 × 10  to 
3.2 × 10  using the proposed algorithm; and 
decreases from 1.4 × 10  to 3.2 × 10  using least 
squares without shuffling, which is almost the same rate 
of improvement for both schemes when 𝑛 is increased. 

 
Fig. 3. Example 1, Scenario 3: 𝑑 = 50 and 𝜎 = 1. 

Scenario 4.  
We set the elements of 𝒘,  𝑤 = 1 + 𝛿𝑤 , where 𝛿𝑤  is 
drawn from 𝒰(0, 𝛿𝜔 ). That means that max(𝑤 ) −

min(𝑤 ) = √12𝛿𝜔 or −√3 𝛿𝜔 ≤ 𝛿𝑤 ≤ √3 𝛿𝜔. We 
set 𝑛 = 2𝑑. We also use 𝒘𝟎 given in (18). We run for 
different combinations of 𝑑 ∈ {10,50} and 𝜎 ∈ {1,5}. 
We also compare performance with the ordinary least 
squares without shuffling. The corresponding results 
are depicted in Fig. 4. Unlike least squares results, the 
proposed algorithm shows very much unaffected by the 
size of observation errors and the dimension of 𝒘. 
However, the performance of the proposed algorithm is 
sensitive to initialization and the initial guess (18) is 
sensitive to the fluctuations in the elements of  𝒘.   

 
Fig. 4. Example 1, Scenario 4: 𝑛 = 2𝑑, 𝑤 = 1 + 𝛿𝑤 , where 
𝛿𝑤  is drawn from 𝒰(0, 𝛿𝜔 ). 
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Example 2 

In this example, we illustrate the performance of the 
proposed batch process approach proposed in Section 
III. We draw the elements of 𝑿  from 𝒰(0,1). The 
permutation matrix, 𝑴 , is chosen at random from the 
set of all 𝑛 × 𝑛  permutation matrices. We set the 
elements of 𝒘,  𝑤 = 1 + 𝛿𝑤 , where 𝛿𝑤  is drawn 
from 𝒰(0, 𝛿𝜔 ). We hold 𝑑 = 50 and 𝜎 = 0.1 for 
𝛿𝜔 ∈ {0,0.5,1,5}, and the estimate (15), we use 𝑛 = 𝑑 
and 𝑙 = 2𝑑. We consider 𝑘 ∈ {1,2, … , 10} in (17). For 
each point in the experiments we conduct 1,000 
different run and take the average of the corresponding 
relative error. The results are depicted in Fig. 5. As 
expected, the relative error decreases as 𝑘 increases or 
𝛿𝜔 increases. 

 
Fig. 5. Example 2. 𝑑 = 50, 𝜎 = 0.1, 𝑛 = 𝑑, and 𝑙 = 2𝑑. 

V. Conclusion 

This paper tackled shuffled linear regression problem 
using stochastic approximation. The proposed recursive 
algorithm aimed for per-iteration minimization of the 
mean square estimate error. Although our algorithm 
turned out to be sensitive to initialization errors, the 
algorithm is considered as the first working solution for 
arbitrary large dimensions and arbitrary large 
observation errors. Numerical simulations have shown 
that our method with shuffled datasets can outperform 
the proposed approach in [11] and the ordinary least 
squares method without shuffling in presence of 
substantial observation errors. Further work could 
address its sensitivity to initialization while comparing 
performance with the existing art work such as the ones 
in [1] and [11], which can broaden its domain to 
different applications. For example, based on the 
different classes of datasets, one may be able to devise 
different initialization. In addition to the mentioned 
work, we considered a problem where at least 𝑑 
different independent datasets are available. The 
proposed initialization-independent solution has been 

shown to be simple, effective, accurate, and can easily 
deal with high dimensions.     
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