

LEBANESE AMERICAN UNIVERSITY

METAHEURISTIC ALGORITHM FOR TESTING WEB 2.0

APPLICATIONS

By

HRATCH MICHEL ZEITUNLIAN

A thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

School of Arts and Sciences

January 2012

v

THESIS COPYRIGHT RELEASE FORM

LEBANESE AMERICAN UNIVERSITY NON-EXCLUSIVE

DISTRIBUTION LICENSE

By signing and submitting this license, you (the author(s) or copyright owner) grants

to Lebanese American University (LAU) the non-exclusive right to reproduce,

translate (as defined below), and/or distribute your submission (including the

abstract) worldwide in print and electronic format and in any medium, including but

not limited to audio or video. You agree that LAU may, without changing the

content, translate the submission to any medium or format for the purpose of

preservation. You also agree that LAU may keep more than one copy of this

submission for purposes of security, backup and preservation. You represent that the

submission is your original work, and that you have the right to grant the rights

contained in this license. You also represent that your submission does not, to the

best of your knowledge, infringe upon anyone's copyright. If the submission contains

material for which you do not hold copyright, you represent that you have obtained

the unrestricted permission of the copyright owner to grant LAU the rights required

by this license, and that such third-party owned material is clearly identified and

acknowledged within the text or content of the submission. IF THE SUBMISSION

IS BASED UPON WORK THAT HAS BEEN SPONSORED OR SUPPORTED BY

AN AGENCY OR ORGANIZATION OTHER THAN LAU, YOU REPRESENT

THAT YOU HAVE FULFILLED ANY RIGHT OF REVIEW OR OTHER

OBLIGATIONS REQUIRED BY SUCH CONTRACT OR AGREEMENT. LAU

will clearly identify your name(s) as the author(s) or owner(s) of the submission, and

will not make any alteration, other than as allowed by this license, to your

submission.

Name: Hratch Zeitunlian

Signature: Date: 13/01/2012

vi

PLAGIARISM POLICY COMPLIANCE STATEMENT

I certify that I have read and understood LAU’s Plagiarism Policy. I

understand that failure to comply with this Policy can lead to academic and

disciplinary actions against me.

This work is substantially my own, and to the extent that any part of this

work is not my own I have indicated that by acknowledging its sources.

Name: Hratch Zeitunlian

Signature: Date: 13/01/2011

vii

ACKNOWLEDGMENTS

 This research would not have been possible without the help and assistance

of many persons.

 First I would like to express my gratitude to my supervisor Dr. Nashaat

Mansour.

 I am also deeply grateful to Dr. Abbas Tarhini for sharing his expertise in the

field of testing and metahuristics. Thanks go also to Dr. Sanaa Sharafeddine, for

being on my thesis committee.

 Finally, special thanks go also to my friends and family for their long

support.

viii

To my parents

ix

Metaheuristic Algorithm for Testing Web 2.0 Applications

Hratch Michel Zeitunlian

Abstract

 This thesis presents a new web application testing technique that addresses

the complexity of WEB 2.0 Applications. Although significant work has been

reported on state-based testing, not much of this work has addressed the

particularities of modern web applications. In this thesis, we model the dynamic

features of WEB 2.0 application by associating features or web pages with states;

state transition diagrams are based on semantically interacting events responsible for

state transitions. Test cases are generated as sequences of semantically interacting

events and optimized using a metaheuristic algorithm. The metaheuristic is a

simulated annealing algorithm that is based on concepts derived from physics. It is

iterative and uses probabilistic search with the goal of minimizing an objective

function. We formulate an objective function that is based on the capability of test

cases to provide high coverage of events, high diversity of events covered, and

definite continuity of events. The experimental results show that the proposed

simultaneous-operation simulated annealing algorithm gives better results than an

incremental version of the metaheuristic and significantly better than a greedy

algorithm. We note that the proposed technique accounts for new features of web

applications such as significance weights that can be assigned to events leading to

significant features or pages, which ensures that test cases will be generated to cover

these features.

x

Keywords: metaheuristics, search based software engineering, simulated annealing,

software testing, state-based testing, test case generation, web applications

xi

TABLE OF CONTENTS

Chapter Page

I – Introduction 1 - 4

II – Literature Review
 5 - 12

 2.1 – Background 5

2.2 – Previous Work 7 - 11

2.2.1–State Based Testing 7

2.2.2–Search Based Testing 11

III – Web Testing Problem and Research Objective 13 -20

 3.1 – Web 2.0 Testing problem 13

 3.2 – Research Objective 19

IV – Proposed Solution and Methodology 21 - 39

4.1 – Motivation 21

4.2 – Graph Modeling 23

4.2.1 – The State Graph 24

4.2.2 – Detecting Event-Driven Elements 29

4.2.3 – Detecting States and Inferring the FSM 29

4.2.4 – Semantic Interactions 30

4.3 – Simultaneous-Operation Simulated Annealing 31

4.3.1 – Solution representation 33

4.3.2 – The Metropolis step and feasibility 33

4.3.3 – Cooling schedule 34

4.3.4 – Energy function 35

 4.4 – Incremental Simulated Annealing 37

 4.5 – Greedy Algorithm 39

V – Experimental Results and Discussion 40 - 48

 5.1 –Experimental Procedure 40

 5.2 –Experimental Results 43

VI – Conclusion 49

VII– References 51-53

xii

VIII – Appendices
 54 –67

Appendix I: Iteration traces for generating a test suite of 50 test

Cases with maximum test case length K=18 using Simultaneous Operations

Simulated annealing using the FSM of WebApp-1 39

Appendix II: The test suite of 40 test cases with maximum test case

Length K=8 obtained using Simultaneous Operations

Simulated Annealing. 59

Appendix III: Iteration traces for generating a test suite

 of 60 test cases with maximum test case

 length K=20 using Simultaneous Operations Simulated

 Annealing using the FSM of WebApp-2. 61-65

Appendix IV: The test suite of 60 test cases with maximum test case

 length K=20 obtained using Simultaneous Operations Simulated

 Annealing on WebApp-2 66-67

xiii

TABLE OF TABLES

Table 5.1 - Energy Values for the three algorithms for different K values

 for WebApp-1. 46

xiv

TABLE OF FIGURES

Figure 3.1- HTML Code of Edit-in-Place Web 2.0 Interface before and

 after clicking the text area. 16

Figure 3.2- HTML Code of Edit-in-Place Web 2.0. 16

Figure 3.3- HTML Code of Edit-in-Place Web 2.0 after click. 16

Figure 3.4 - Javascript functions attaching events to HTML element 17

Figure 3.5 - JavaScript Add two buttons save and cancel. 17

Figure 3.6 - JavaScript function call AJAX request to update the DOM. 18

Figure 4.1 - Example of a state graph model of a web application. 25

Figure 4.2 -Sample HML code of WEB 2.0 Album Management 28

Figure 4.3 -Initial State - no album selected 28

Figure 4.4 -Start Album State – An album is selected 28

Figure 45 -Album State - At least one picture selected 28

Figure 4.6 -Outline of the simultaneous-operation SA algorithm. 32

Figure 4.7 -Structure of the test Suite in simultaneous-operation SA. 37

Figure 4.8- Outline of the Incremental SA algorithm. 38

Figure 4.9 -Structure of the Incremental SA algorithm. 38

Figure 4.10- Outline of the Greedy algorithm. 39

Figure 5.1 –FSM of WebApp-1. 41

Figure 5.2 –FSM of WebApp-2. 42

Figure 5.3 – Some test cases derived by applying Simultaneous- Operations Simulated

 Annealing Algorithm to generate having maximum 18 events per test case

 43

Figure 5.4 – Discontinuity, lack of coverage, Lack of diversity value graphs of

Simultaneous- Operations Simulated Annealing Algorithm to generate having

maximum 18 events per test case, for WebApp-1. 44

Figure 5.5- Energy value of the Objective Simultaneous-Operations Simulated Annealing

 Algorithm Kmax= 18 for WebApp-1. 44

Figure 5.6 -Incremental vs Simultaneous-operation SA. 45

Figure 5.7 -Energy values for test suites of size 60 with a test-

 case length k=20 using Simultaneous- Operations SA,

 Incremental SA and Greedy Algorithms of WebApp-2. 48

1

CHAPTER ONE

Introduction

Testing is an essential part of software development cycle. It is used to

detect errors, and to ensure the quality of the software. Regardless of which software

development model used, development process includes a testing stage at different

points.

 With traditional software, which usually follows the waterfall model, testing

is applied when the coding process has been completed. However web applications

differ from traditional software development where they follow the agile software

development model, which has shorter development time. Because of the short

development time web applications usually lack necessary documents and become

user-centric feedback guided. This makes testing and maintaining web applications a

more complex task.

During the past Decade radical changes were introduced in the development

of web application. These changes pushed forward the conceptual mutation of the

web, where the web is approached as a platform, and software applications are built

upon. Thus the emergence of new generation of web applications and web system

known as web 2.0. Web 2.0 applications are based on highly dynamic web pages,

build around AJAX technologies, which through the asynchronous server calls,

enables users to interact and affect the business logic on the servers.

2

Ajax technology created an umbrella under which the web 2.0 applications

facilitated a high level of user interaction and web page dynamics. Examples are

Google Maps, Gmail, Google Documents, Facebook, Yahoo mail and more.

The Dynamic features of web 2.0 impose additional complexity to the

already hard task of web application testing. The complexity is found in the absence

of traditional navigation paths. A complete web 2.0 web application can be made

from a single page whose content and functionalities change by asynchronous server

calls raised by the user interaction with the application, which changes the state in

the client site resulting into a dynamic DOM. It is not possible to walk through the

different states of the dynamic page since there is no unique URI assigned to a

specific variant of the Dynamic Page unlike in traditional web applications where

we have an explicit and unique URI for each Web page and each variant of a

dynamic web page.

To test Web 2.0 applications and cover the dynamic aspects of the web 2.0;

widgets, third party applications that can be executed within WebPages, Web parts,

Portliest and hypermedia, we suggest a state based testing strategy that will

dynamically generate a finite state machine from a web application by extracting

semantically interacting events [1] that produce state changed in the user interface.

From the inferred graph test cases will be generated having a sequence of events.

Empirical results show that the longer the test case sequence, the more fault

detection capability. However; generating test case from the finite state machine can

lead to a very large test suite which can limit the usefulness of the method.

Marchetto et al and Paolo Tonella suggested search based approach to generate long

3

sequences of events while keeping the test suite size reasonably large using a greedy

hill climb algorithm. The problem with the greedy algorithm is that the solution will

be a local optimum rather than being a global optimum.

The objective of the research is to come with a more effective state based

testing for a web 2.0 application that will cover all dynamic features of web 2.0

Application. In this we will be using Heuristics and not Graph algorithms, why not

graph algorithms because our problem is to come up with a good sub optimal test

suite with test cases that will reduce the test suite size while keeping the fault

revealing power of the test suite. Whereas traditional path coverage techniques

(Node Coverage or transition coverage) will generate a very big number of test cases

whose number will increase exponentially ,as the maximum sequence length of the

in a test cases increase.

To accomplish our strategy we formulate our approach around simulated

annealing. The metahuristic algorithm adapts the dynamic nature of web 2.0

application whose test cases require back and forth state traversal, such a traversal

between the states generates loop patterns included in the events sequences. Graph

algorithms do not handle loops smoothly. Graph algorithms that will generate a

large set of combinations and possibilities which doesn’t server our aim of coming

up with the reduced test suite with best configuration of test cases. The simulated

annealing will manage a best configuration of a fixed size test suite that suffices the

desired test suite compositions characteristics which in our case, are test case

diversity, lack of discontinuity in event sequences and event coverage which reflects

the functionalities.

4

The rest of the work is organized as follows. In Chapter 2, we give a brief

description of the testing problem and the objective of our research. In addition to

background information and previous work done on testing web applications.

Chapter 3 will describe our proposed solution, the simultaneous-operation simulated

annealing, incremental simulated annealing and the greedy algorithms, while the

experimental results are in Chapter 5; finally we give our conclusion in Chapter 6.

5

CHAPTER TWO

Literature Review

2.1 Background

In the effort to reduce application testing costs and improve software quality

a lot of work has been done on automating testing techniques. One of the approaches

used to automate test case generation is based on state machine model or even flow

model [13].

State based testing is ideal when dealing with sequences of events. In some

cases, the sequences of events can be potentially infinite, which of course exceeds

testing capabilities, thus the need to come up with design technique that allows

handling sequences of random lengths .

State based testing model has proved to be a successful approach specially

when dealing with GUI testing. However the approach is considered to be resource-

intensive specially while generating the model due to the significant manual

intervention needed.

To improve the cost effectiveness of the method and reducing the number of

possibilities the state based testing is extended to be formulated on a feedback

strategy [13].

6

When using state machines to model a web 2.0 application states represent

the user interfaces and the state transitions represent the events triggering the

transition. A test case is a sequence of events that correspond for a path in the FSM.

FSM representation of Web 2.0 Application like all modern application have

scaling problem because of the large number of candidate states and transitional

events. Several suggestions were proposed by researchers to handle the scalability

issue based on path search algorithms.

Several variants of FSMs have also been used for testing. The mutations are

driven from the main aim to reduce the total number of states, and algorithms

traverse these machine models to generate sequences of events as test cases.

These techniques require an initial test suite to be created, either manually or

automatically, to be executed and evaluated. The feedback resulting from the

evaluation is used to permute the initial configuration to automatically enhance or

generate new test cases. The evaluation of feedback strategy is formulated mainly

around the optimization algorithm used to target a specific goal. The targeted goal

can be one of many however usually they are code coverage or state coverage or

diversity to improve the overall performance of the test suite [14].

7

Alesandro Marchento and Paolo Tonella in their research on Testing Ajax

enabled web applications prove the effectiveness of state based testing in finding

faults [1]. In their initial work they generate a test suite of all paths of the same

length K test cases derived from Finite State Machine representing the web

application. Unfortunately empirical studies show that the effectiveness of this

method however they highlight a major drawback presented in the very large test

suite that may limit the usefulness of the test suite. To improve the cost effectiveness

of their method Marchento And Tonella investigate test suite reduction using a

search algorithm based on Hill-Climbing to deal with the problem of generating

test cases out of long sequences of events on the same time keeping the test suite

size reasonably small without degrading the fault revealing power of the

exhaustively generated test suite.

2.2 Previous Work

2.2.1 State Based Testing

Extended Finite State machine (EFSM) is another model which is largely

used for software testing. The EFSM model extends the classic FSM model with

input and output parameters, context variables, and predicates. It is a remedy for the

state explosion problem which FSM models face by inferring huge number of states.

8

In contrast to the Finite State Model which can be used to generate test suites

that guarantee complete fault coverage. Or a complete test suite within the bounds to

detect mutant Finite state Machines with in a predefined number of states. An EFSM

can often be viewed as a compressed notation of an FSM. It is possible to unfold it

into a pure FSM by expanding the values of the parameters, assuming that all the

domains are finite. However this expansion should be carefully designed so as not to

fall into the same trap of state explosion.

A.Petrenko and S. Boroday [15] call the state of unfolded EFSM as

“configuration” and investigate the problem of constructing a configuration of

sequences from an EFSM model , specifically when unfolded EFSM states result in

generation of sequences that are different from sequences obtained from the initial

configurations or at least they are not in the maximal subset. The authors generalize

the problem into a search problem generating configurations sets. They demonstrate

how the problem can be tackled and EFSM reduced so that existing testing methods

that rely on FSM can handle the configurations as input. They present a theoretical

framework for determining configuration-confirming sequences. Based on EFSMs

.Moreover they elaborate on different derivation strategies.

The authors argue that the proposed approach of confirming sequence

generation can be used to improve any existing test derivation tool that typically

uses a model checker mainly to derive executable preambles and post ambles.

9

Tarhini, Fouchal, and Mansour presented a safe regression testing technique,

for web service based applications [7]. In their work they target the challenges of the

distributed system over heterogeneous networks in addition to availability and

reliability of web service based systems. Being volatile systems prone to periodical

changes and modification of web services, Web service based applications require to

be tested fully, to guarantee coherence with the structural changes. Thus regression

testing needed to select test cases from the original test suite generate during the

initial development phase, and generate new ones to test the modification and newly

added modules.

In their work the authors propose a regression testing method that is safe, by

retesting the entire web system upon any modification. They base their technique on

modeling the web application as a two level abstract model, and generating test

cases sequences and test histories for the initial development. The test case

generation is performed in exhaustive method that explores the entire space thus it

inherits the exponential explosion of test case generation. The technique proposed

lacks selective testing strategy to avoid the generation of large test suites.

Memon and Pollack worked on AI planning has to manage the state-space

explosion by eliminating the need for explicit states [16]. In their work the GUI

description is manually created by a tester; in the form of planning operators, which

model the preconditions and post-conditions of each GUI event. The planner

automatically generates test cases using pairs of initial and destination transitional

states. The authors prove the efficiency of the system and suggest to be integrated

with all FSM based modeling techniques.

10

Recently Alessandro Marchetto and Paolo Tonella worked on Web testing

based on State Based testing for AJAX enabled web applications [1], to shed light

on faults introduced by the asynchronous calls between the client and server.

The technique is based on inferring a finite state machine out of the Ajax

application. State based testing is originally defined for event driven object oriented

programs and lately used in GUI testing [1]. Due to the similarity between GUI

applications and Web application specially AJAX application, that are built around a

dynamic DOM structure manipulated by events Alessandro Marchetto and Paolo

Tonella represent the web application by a Finite State Machine which depicts the

state transitions and the events responsible for those transitions.

In their work the authors avoid using state based techniques, such as

transition coverage or state coverage since such strategies have the potential of

deriving large number of test cases. And they propose test suite reduction by

adopting state based testing approach based on the notion of semantically interacting

events.

In the tests performed Tonella and Marchetto show the test suite size

reduction ratio between the non-semantic sequences and semantically interacting

sequences. The size reduction obtained is between 78% -87% across different test

case lengths. Moreover the results reveal an exponential growth of the number of

11

test cases with the increase of the event sequence length. Test cases with sequences

between 5 – 11 become very large thus resulting in an unmanageable test suite.

However, the technique proves its effectiveness in finding faults. Where

relatively short length test cases composed of a sequence of four semantically events

were able to detect 90% of the injected faults. On the other hand the technique

inherited the problem of generating very large number of test cases especially with a

long sequence of events in a test case thus limiting the usefulness of testing and test

suite reduction method.

2.2.2 Search Based Testing

In a paper published later Alessandro Marchetto and Paolo Tonella address

test suite reduction solution by generating controlled sequences of events and

propose a heuristic, a greedy algorithm Hill Climb [2] to generate test cases out of

short event sequences while keeping the test case number reasonably small in the

suite to preserve the fault revealing power comparable to that of exhaustive test

suite.

The Hill Climbing algorithm described in their work is a search algorithm

that is guided by an objective function. It is used to evaluate an initial test suite and

perturb member test cases. The perturbation is guided by the objective function, thus

if the changes improve the fitness of the configuration it is accepted. At the end the

obtained test suite will be an optimized test suite. However hill climbing will result

in a local optimal solution instead of a global one.

12

Perturbations are done by concatenating a semantically interacting event at

the end of an existing test case [2].

The authors base their fitness function on the notion of test suite diversity

which is calculated by the frequency of each event covered in the FSM. Moreover,

they experiment their algorithm by using different measures as fitness. EDiv which

represents diversity based on the execution frequency of each event. PDiv test suite

diversity based on the execution frequency of a pair of semantically interacting

events. TCov which is the test suite diversity based of the FSM coverage.

Experimental results show the effectiveness of the Hill Climb algorithm in

reducing the size of the test suite. The comparison between the different variants of

the algorithm using the different fitness measures show that Edge Diversity yields to

better results than the others. The test suite obtained via Edge Diversity maintains a

high level of fault revealing capability.

13

CHAPTER THREE

Web Testing Problem and Research Objective

3.1 Web 2.0 Testing Problem:

With the shift in technology Web Applications are no longer static pages, but

light client applications, that offer more features than the traditional web

applications used to. With the development of the Web Industry, Web 2.0

Applications increasingly play an important role on daily activities and deal with

increasingly sensitive data [3].

The correctness of a web application’s User Interface is a good reference

ensuring the correct operation of the overall web application. Comprehensive testing

is a way to insure the correctness of the user interface. UI testing requires that test

cases to be composed of UI sequence of events that invoke UI State changes when

executed. The most common technique used to test UI is the capture and replay

method which reacquire human intervention and test cases are generated manually

by the user recording certain scenarios.

An important factor of cost effectiveness is optimizing the test suite,

specifically the composition of test cases in the test suite. Test suite composition

and test suite size have been hot research topics for a long time thus attracted a lot of

debates around it. While some researchers suggest large test cases as small test suite

units arguing that a large, not overly complicated test case, is more efficient than

simple test cases. Others suggest large test suites with small test suites are more

14

effective, since small test cases result in fewer cascading errors and large test suites

are useful to expose system failures. Although those arguments refer to the size of

the test case and test suite however it is just a reflection of a more complex issue, the

issue of test case composition. Experimental work show that test suites containing

test cases of varying lengths perform better. However the sequence lengths should

be controlled by logic. Test suites composed of many small test cases can be none

effective when testing Web 2.0 Applications that have complex state dependencies.

We believe that for most software systems and specially WEB 2.0

application test suites most have at least some level having varying length test cases

is necessary.

Existing web testing techniques lack the capability to handle the features of a

WEB 2.0 Application. Unlike traditional Web Applications, Web 2.0 applications

are often single page applications thus they lack traditional navigation paths. User

interaction with the interface changes the structure of the content build around the

DOM. Navigation in traditional Web applications is composed of hyperlinks where

as in a Web 2.0 application every HTML element is able to produce navigation or a

State change since an event can be attached to it at runtime.

Thus traditional white box testing techniques like Code Coverage [13] used

to test web applications will fail in testing WEB 2.0 applications efficiently. Code

Coverage technique is based on static analysis of the source code. Statically

analyzing Web 2.0 code does not reveal request call backs. Thus the code coverage

model that represents the web application statements executed as nodes and the

15

edges as control transfers will not cover functionalities provided by asynchronous

call backs. And functionalities and events added at runtime.

Such functionalities are heavily employed in Web 2.0 light client

applications where Java script code is used to modify both Structure and content of

HTML elements such as <Div>,<P>.

To illustrate dynamic capabilities WEB 2.0 application here is a simple

example is of inline editing a text area. Figure 3.1 show the html code of the WEB

2.0 Page. The HTML element to make it editable is the element <P>with an attribute

ID= “hmz”. The page functionality is as follows:

1. onMouseOver Highlight the text in <p> .

2. onMouseOut hide the highlight .

3. on click, hide the area to be edited and replace with the <p> with a

<textarea> and <input> elements .

4. Remove all of the above if the user cancels the operation

5. on Save button click, execute an Ajax POST and show that

 busy page state animation.

6. on Ajax callback , update the page with the modified content.

16

Figure 3.1- HTML Code of Edit-in-Place Web 2.0 Interface before and after clicking

the text area.

<head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>

 <title>Edit-in-Place Web 2.0</title>

</head>

<body>

 <h1>Edit-in-place</h1>

 <p id="hmz"> Hratch is Showing the properties of WEB 2.0. Edit the content </p>

 </body>

 </html>

Figure 3.2- HTML Code of Edit-in-Place Web 2.0

<body>

 <h1>Edit-in-place</h1>

 <p id="hmz"> Hratch is Showing the properties of WEB 2.0. Edit the content </p>

 <div id="desc_editor">

 <textarea id=" hmz _edit" name=" hmz " rows="4" cols="60">Hratch is Showing the properties

 WEB 2.0. Edit the Content </textarea><div>

 <input id="desc_save" type="button" value="SAVE">

 OR

 <input id="desc_cancel" type="button" value="CANCEL"></div>

 </div>

</body>

Figure 3.3- HTML Code of Edit-in-Place Web 2.0 after click.

The java script functions in figure 3.4 are responsible for attaching “click” ,

“mouseover” and “mouseout” events to the candidate HTML element <P>.

Moreover the click event is assigned an event handler “edit”, the execution of the

“edit” event at runtime will insert into the DOM two buttons Save and Cancel. The

buttons in their turn are attaching to the click events that trigger the function

saveChanges and cleanChanges.

17

Event.observe(window, ‘load’, init, false);

 function init(){

 makeEditable(‘hmz’);

 }

 function makeEditable(id){

 Event.observe(id, ‘click’, function(){edit($(id))}, false);

 Event.observe(id, ‘mouseover’, function(){showAsEditable($(id))}, false);

 Event.observe(id, ‘mouseout’, function(){showAsEditable($(id), true)}, false);

 }

 function showAsEditable(obj, clear){

 if (!clear){

 Element.addClassName(obj, ‘editable’);

 }else{

 Element.removeClassName(obj, ‘editable’);

 }

 }

Figure 3.4 Javascript functions attaching events to HTML element

function edit(obj){

 Element.hide(obj);

 var textarea =’‘;

 var button = ‘ OR‘;

 new Insertion.After(obj, textarea+button);

 Event.observe(obj.id+’_save’, ‘click’, function(){saveChanges(obj)}, false);

 Event.observe(obj.id+’_cancel’, ‘click’, function(){cleanUp(obj)}, false);

}

Figure 3.5- JavaScript Add two buttons save and cancel.

18

function saveChanges(obj){

 var new_content = escape($F(obj.id+’_edit’));

 obj.innerHTML = “Saving…”;
 cleanUp(obj, true);

 var success = function(t){editComplete(t, obj);}
 var failure = function(t){editFailed(t, obj);}

 var url = ‘edit.php’;
 var pars = ‘id=’ + obj.id + ‘&content=’ + new_content;

 var myAjax = new Ajax.Request(url, {method:‘post’,

 postBody:pars, onSuccess:success, onFailure:failure});

 }

 function editComplete(t, obj){

 obj.innerHTML = t.responseText;

 showAsEditable(obj, true);

 }

 function editFailed(t, obj){

 obj.innerHTML = ‘Sorry, the update failed.’;
 cleanUp(obj);

 }

Figure 3.6- JavaScript function call AJAX request to update the DOM.

 The above example shows the level of complexity added by the new

technologies used to develop web 2.0 applications where each GUI element can

force state changes at runtime. More over the newly derived states will contain

more clickable elements that expose Web application functionalities previously

hidden from the user.

19

3.2 Research Objective

The objective of this thesis research is to tackle the drawbacks of the

optimization solution presented by Marchento and Tonella, in addition to modifying

the State Based testing technique [1] to handle the dynamic feature of Web 2.0

applications. Although the empirical result show the effectiveness of their method

however their optimization is formulated around an aggressive hill-climbing

algorithm [2] whose solution is in the local minimum and not a global optimum. We

propose simultaneous-operation simulated annealing algorithm and gives better

results than an incremental version of the metaheuristic as an alternative to the

greedy algorithm, that will take the solution out of the local minima and result in a

good sub optimal test suite that will reduce the size of the test suite without losing it

power in detecting faults.

We formulate our optimization algorithm around methahuristics and not on

graph algorithms, since simulated annealing will adapt gracefully to the nature of

Web 2.0 applications that we are applying our testing method on. Graph algorithms

although can guarantee graph coverage however; However without prioritization.

Thus using graph coverage algorithms will result in huge number of possibilities,

especially in the presence of loops, which makes the selection and generation of test

cases of a test suite almost untraceable. Moreover Graph algorithms do not account

for a combination of factors such as diversity, coverage in addition to continuity.

 In addition to the fact that when dealing with long sequences the graph

coverage possibilities increase exponentially. Thus the need to control sequence

20

lengths and to come up with a sub optimal solution of a fix sized test suite that will

represent the best candidate test cases to be executed.

Unlike previous work done on State based testing [1][2] for web applications

where inferring the state graph required a significant amount of manual interference,

as well as user interaction logs and possible input from outcomes of previous black

box tests. Our proposed method will fully automate the generation of the finite

state machine without the need for functionality trance. This level of automation will

be reached by detecting clickable elements in the client DOM and automatically

executing it. The auto executing of clickable events enable us to cover all provided

functionalities by the web application even those functionalities that are never or

rarely used by the user or used only from a particular state and not from within

different states. In addition to the auto detection and execution of events our

proposed strategy allows us to differentiate core functionalities from add-ons and

third party code this can be achieved by adding an attribute to HTML element of the

core component distinguishing them from similar elements introduced by an add-on

or third party code. Thus the possibility of assigning importance weights for events

covered by core components.

21

CHAPTER FOUR

Proposed Solution /Methodology

4.1 Motivation

 Web 2.0 applications are constructed around highly dynamic web pages.

The structure of these pages is constructed over a Dynamic DOM that is

manipulated by the asynchronous server messages initiated by the client. To test

Web 2.0 Applications and its dynamic features we feed the system with a Finite Sate

Machine which represents the DOM states and the events that are responsible of the

transitions [1][2]. Using the Finite State Machine test cases can be generated via

different techniques however previously defined strategies usually suffer some

drawbacks by generating high number or ending in a local optimal solution.

A greedy hill-climbing algorithm [2] was used to generate test sequences with

best set of semantically interacting events; however, such algorithms will gradually

get stuck in local minima. In this thesis, we chose simulated annealing strategy to

generate test sequences because it allows uphill moves which will forces the solution

to jump out of a local minima and fall into a more promising downhill in a

controlled way.

The reason to select a metahuristic algorithm to solve our optimization

problem lays in the nature of web 2.0 applications. To effectively test web

applications and specifically WEB 2.0 application visiting the same state back and

22

forth is essential, thus test cases generated to test WEB 2.0 applications should be

capable of handling loops. Traditional Graph traversal algorithms do not handle

loops efficiently thus they are not good candidates to generate test cases for Web 2.0

applications. More importantly our testing strategy focuses on test suite reduction

and optimization. Graph coverage algorithms be it State coverage or transition

coverage are capable of retrieving all independent paths of a graph but they lack the

power to prioritize the output, Thus resulting into huge number of possible

sequences. This number will increase exponentially as the maximum length of test

cases increase which makes managing the test sequences unaffordable [2]. Our study

our aim is to come with the best test suite with predefined size that containing best

candidate set of test cases prioritizing event sequence continuity, test suite diversity

and coverage.

To be able to compare our work with greedy hill-climbing algorithm [2]

proposed by Alessandro Marchetto and Paolo Tonella which is greedy incremental

algorithm where events are added on sequences to generate longer sequence if the

addition of the new test case improves the test suite configuration it is accepted else

rejected. We formulate an incremental simulated annealing algorithm that at will

generate the test suite incrementally by adding test case after each Simulated

Annealing cycle. The added test case will be presenting the best configuration given

previous decision, added test cases, into the test suite.

In contrast to the incremental simulated annealing, simultaneous operations

simulated annealing algorithm is formulated to fully utilize the power of simulated

annealing. The algorithms will handle the entire test suite composition and will be

perturbing the test cases simultaneously to reach an optimum configuration.

23

In addition to the two the simulated annealing algorithms we formulate a greedy

algorithm that will be searching for an optimized configuration of the test suite in

the neighborhood solution by perturbing the test suite and checking of improvement

in the fitness values.

In addition to the test suite reduction technique, in this thesis we propose an

automated method to infer a finite state machine out of the States of Web 2.0

application. Unlike the proposed method by Alessandro Marchetto and Paolo

Tonella in their state based testing work [1][2] where inferring a finite state

machine requires manual work to refer to traces and some level of functionality

testing before proceeding with the graph generation. The method we define will

allow automatic state generation by detecting clickable events responsible for state

transitions and executing them automatically.

4.2 Graph Modeling

Extracting a state graph form a Web 2.0 application is not a direct and simple

task. The main challenge is the absence of traditional navigational paths. This is

because in Web 2.0 there is no unique URI assignment to a specific variant of the

Dynamic Page, unlike traditional web applications where each web page state in the

browser has an explicit URI assigned to it [2]. Moreover, an entire Web 2.0

application can be created from a single web page where User Interface (UI) is

determined dynamically through changes in the DOM initiated by user interaction

24

through asynchronous server calls. Further, Web 2.0 application may contain third

party HTML Units, User shared data, widgets and media content that are added to

the application simultaneously during execution. To overcome the above mentioned

challenges our testing mechanism will reconstruct the user interface states, and

generate static pages having Navigation Paths each with unique URL. These Static

pages will be used to conduct State-Based testing [1].

To achieve the static-like pages we need a tool that will execute client side

code, and identify clickable elements which may change the state HTML/ DOM

within the browser[1][2]. From these states changes we will build our state graph

that captures the states of the user interface, and the possible transitions between the

states.

4.2.1 The State Graph

Our Model must reveal all user interface state changes in Web 2.0 application.

Thus the model must record all navigation paths/event of the DOM state changes.

This can best be represented by a State Graph which is defined as follows.

Definition 2.1. A State Graph for a Web 2.0 site A is a 5 tuple <r,V,C, E,W>

where:

1. r is the root node representing the initial state after A has been fully loaded

into the browser.

2. V is a set of vertices representing the states. Each v є V represents a run-time

state in A.

26

Figure 4.2 Shows the HTML code of Online Album Management WEB 2.0

Application. For the sake of simplicity only some of the functionality is illustrated

and code responsible for formatting and design is removed.

To infer the state graph of the online album management web application is

loaded into the browser. Loading the webpage will generate state S1 in Figure 3.1.

The state is characterized by having the entire HTML element set to Null or Empty

Figure 4.3 shows the DOM tree after the page is loaded on the client web browser.

Being the actual initial first state, S1 is added to the FSM. After DOM is loaded and

Modified at the client side, it is preceded with the search of clickable element. The

first clickable elements detected is “btnSelect” that triggers the event “select album”

as show in HTML code in figure 4.2. The Button “btnSelect” is represented by an

input element of type submit <input type = “submit” name= “btnSelect”> in the

DOM. Thus the event “Select Album” is executed. The Execution of the “Select

Album” event generates the state S3 in figure 3.1 represented in the by the DOM in

Figure 3.4 which shows the Album selected and the album name element value

filled as not empty. Initially the generated State S3 is analyzed and compared with

the previously covered states. The obtained State being a new state will be added to

the FSM and an edge marking the event “Select Album” will be added between the

states marking the transitional event between the states S1 ,S3 as show in the Figure

3.1.

Next the clickable element <input type = “submit” name= “btnShowAlbum”>

is detected and the event “Show Album” event is executed. The execution of the

“show album” forces dynamic changes of DOM and a transition of a new state S2.

The states S2 DOM representation in Figure 4.5 shows at least one photo thus an

image element with non-empty image source and text element containing the

27

description of the photos in addition to the name of the album. Comparing the State

with previously obtained states it is marked as new and added to the FSM as

depicted in Figure 3.1 which shows the directed edge “Show Album” connecting the

states S3 to S2.

Continuing scanning for clickable events the button “btnDelete” is detected

represented by the HTML element <input type = “submit” name= “btnDelete ”> and

the event “delete album” is executed brining the state S2 into a new transition.

Comparing the newly obtained state with previously generated states it is marked

similar to the state S1 the initial state. Since the state is previously added in the

FSM only the event “Delete Album” is added as an edge marking a transition

between the states S2, S1 as depicted in Figure3.1.

 Similarly all clickable elements will be detected and corresponding events

executed, and the FSM generated covering all functionalities included by the WEB

2.0 Application.

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Ajax Photo Album Example</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 </asp:ScriptManager>
 <asp:UpdatePanel ID="upAjaxContent" runat="server">
 <ContentTemplate>
 <div>
 <asp:Button ID="btnSelect" runat="server" Text="Select"
 onclick="Select Album" />
 <asp:Button ID="btnDelete" runat="server" Text="Delete"
 onclick="Delete Album" />

 <asp:Button ID="btnEdit0" runat="server" onclick="edit album" Text="Edit" />

 <asp:Button ID="btnShowAlbum" runat="server" onclick="Show Album"
 Text="Show Album" />

 <div/>
 <div>
 <asp:Label ID="lblAlbumName" runat="server"></asp:Label>
 <asp:Image ID="Image1" runat="server" Width="500px" />

 <asp:TextBox ID="txtDescription" runat="server" Height="75px"
 TextMode="MultiLine" Width="499px"></asp:TextBox>
 </div>
 </ContentTemplate>
 </asp:UpdatePanel>

 </form>
</body>
</html>

28

Figure 4.2 Sample HML code of WEB 2.0 Album Management

Figure 4.3 DOM of Initial State S1- no album selected

Figure 4.4 DOM of Start Album State S3 – An album is selected

 Figure 4.5 DOM of Album State S2 - At least one picture selected

29

 When inferring the FSM two issues are to be considered while building. First we

need to detect the event-driven elements; next, we need to identify the state changes.

The State Graph is created incrementally; initially, the state graph contains only the

root state. Additional states are appended to the graph as event-driven elements are

traced / invoked in the application and state changes are analyzed.

4.2.2 Detecting Event-Driven Elements

Once an HTML page is loaded, we can access the HTML elements through

the DOM. However, there is no direct way to detect the event driven elements; thus

we need to introduce a candidate list of elements to be used as a reference.

Candidate elements are elements that are invoked by different types of events like

(Click, Doubleclick, MouseOver). For example, <div>, <input>, and <a> are

candidate elements.

4.2.3 Detecting States and Inferring the FSM

As a candidate element is detected, we execute the event attached to that

element. In order to determine whether the execution of the event results in state

change, we compare the version of DOM-tree after firing the event and the DOM-

tree version just before firing that event. If the execution of the event results in state

change, we check whether the resulting state is already covered. To check State

30

similarities we generate a hash code out of each loaded DOM-tree and compare it

with the existing hash codes, if the state hasn’t been covered previously it is added

to the FSM, with an edge representing the transitional event connecting the two

states. If the state is already covered, simply an edge will be added between the

states.

4.2.4 Semantic Interactions

Definition 2.2. Semantically interacting events: Events e1 and e2 are

interacting semantically if there exists as state S0 such that their execution in S0 does

not commute, i.e., the following conditions hold:

S0 =>e1:e2 S1 ; S0=>e2:e1 S2 ; S1<>S2

where S0 , S1, and S2 are any states in the state graph of the web application.

The notion of pair of semantically interacting events can be easily generalized

to sequences [3].

Definition 2.3. Sequence of semantically interacting events: The event sequences

(e1,…en) is a sequence of semantically interacting event if every pair of events in the

sequence is pair of semantically interacting events according to Definition 2.2.

31

4.3 Simultaneous-Operations Simulated Annealing

Simulated annealing is influenced by ideas from physics and is analogous to

the physical annealing of a solid [11]. Annealing is used in metal to reach a state

where the atoms are highly ordered. To reach this state material is heated and then

cooled very slowly, allowing many atomic rearrangements till it comes to thermal

equilibrium at each temperature drop.

The simulated annealing algorithm (SA) simulates the natural phenomenon

by perturbations and search process in the solution space. The search is guided by an

optimizing energy function. It starts with some badly unordered initial

configurations at a high temperature and then gradually cooled down to a freezing

point with a highly optimized best global solution [11]. In the following subsections,

we describe how we generated test sequences of semantically interacting events

using the simulated annealing algorithm; an outline of the SA algorithm is given in

Figure 4.1.

In our work, we choose simulated annealing strategy to generate test

sequences because it allows us to jump to a global optimal or sub optimal

configuration, by controlled uphill moves that will allow more downhill moves thus

pulling the solution out of local minima.

32

Initial configuration = Sequence of events from the state graph;

Determine initial temperature T(0);

Determine freezing temperature Tf ;

while (T(i) > Tf and not converged) do

 repeat several times

 (multiple of the number and size of required test cases)

 Generate_function();

 save_best_sofar();

 T(i) =  * T(i);

endwhile

procedure Generate_function()

perturb();

if (OF1  0) then

 update() /* accept */

else

 if (random() < e
- OF1 / T(i)

) then

 update() /* accept */

 else

 reject_purturbation();

Figure 4.6 Outline of the simultaneous-operation SA algorithm.

It is clear from the SA algorithm described in Figure 4.6 that SA strategy

consists of four basic components.

1. Configuration

2. Perturbation

3. Energy Function

4. Cooling Schedule

33

4.3.1 Solution Representation

Our solution will be represented as a configuration C, which is implemented

as an array of variable-length test cases. Each test case contains a maximum of K

events derived from the State Flow Graph. The length of the array is K* N, where N

is the maximum number of test cases required in the solution. To allow variable

length of test cases, we will introduce fake edges into our set of valid events. These

fake edges, called “No Edge”, will play the role of space holder in the array.

N Test cases

Test Case K events

Figure 4.7 - Structure of the test Suite in simultaneous-operation SA.

4.3.2 The Metropolis step and feasibility

An iteration of the Metropolis [11] step, Generat.,e_function(), consists of a

perturbation operation, an accept/reject criterion, and a thermal equilibrium

criterion. Perturbation in our strategy is done randomly by selecting an event within

a test case and substituting it with a randomly chosen event from the Events Set.

The acceptance criterion checks the change in E due to the perturbation. If the

change decreases the objective function, the perturbation is accepted and C is

updated. However, if the perturbation causes the objective function to increase, it is

accepted only with a probability e
-OF1 / T(i)

. The main advantage of this Monte Carlo

algorithm is that the controlled uphill moves can prevent the system from being

34

prematurely trapped in a bad local minimum-energy state. Note that for lower

temperature values T(i), the probability of accepting uphill moves becomes smaller;

at very low (near-freezing) temperatures, uphill moves are no longer accepted. The

perturbation-acceptance step is repeated many times at every temperature after

which thermal equilibrium is considered to be reached.

Perturbations can make C infeasible if they violate the definition of

continuity. But, the formulation of the energy function E accounts for this

infeasibility problem. The last term in E (DC) can be assigned a large weight, γ, so

that infeasibility is severely penalized. Thus, infeasible test cases will be prevented

at low temperatures.

4.3.3 Cooling schedule

The cooling schedule is determined by running a heuristic algorithm that

deduces the starting and freezing temperatures with respect to the number of Uphill

Jumps. The initial temperature T(0) is the temperature that yields a high initial

acceptance probability of 0.93 for uphill moves. The freezing point is the

temperature at which such a probability is very small (2-30), making uphill moves

impossible and allowing only downhill moves. The cooling schedule used in this

work is simple: T(i+1) =  * T(i), with  = 0.95.

 As the annealing algorithm searches the solution space, the best-so-far

solution (with the smallest OF1) found is always saved. This guarantees that the

output of the algorithm is the best solution it finds regardless of the temperature it

35

terminates at. Convergence is then detected when the algorithm does not improve on

the best-so-far solution for a number of temperatures, say 20, in the colder part of

the annealing schedule.

4.3.4 Energy function

The Energy function measures how good the current configuration is. We based

the energy function on three major weighted factors. The weights represent the

importance of each factor. The three factors are Continuity, Diversity and Coverage.

Continuity:

When testing event based applications it is very important to test a

continuous set of events. In fact, test cases with longer continuous sequences of

events have higher capability of revealing faults. In our Simulated Annealing

strategy we want to minimize the discontinuity of events in a test case. We

calculate discontinuity by checking the events in every test case and

incrementing the value by one whenever discontinuous events are found.

Diversity:

 Diversity is an important factor which guarantees that test cases will cover

events from the entire scope of the Web application and not just concentrate on

events from a certain part, and therefore, we guarantee equally distributed events

within the entire test suites. In this work we will be minimizing the Lack of

Diversity by calculating the average frequency of events in the entire Test Suite.

Thus, given a test suite S, composed of a set of test cases based on semantically

36

interacting sequences of events, its Lack of diversity (Div) is computed as

follows:

Div =√∑

where: e is an event that belongs to the set of events Events, Fe is the execution

frequency of event e, and Favg is the average frequency of event e computed over

the entire test suite.

Weighted Coverage:

 In Web 2.0 applications, end users and third parties can change the content

of a web page dynamically by injecting HTML code or web widgets through

their interaction with the site. Thus, some events would have higher importance

than other events; accordingly, we may control or even limit some functionality

from being included in our testing plan by allowing a measure of importance on

events that are part of the original web application, compared to injected events

or functionality into the web application. The importance of events is

represented by pre-defined weights assigned to every event. Again we want to

minimize the value of the unimportant events and this value is calculated by

checking if an event is covered in the test suite and multiplying it with its

importance or weight.

WC =
∑

∑

Finally, the Energy function will be represented as:

DCFF
W

CW

Eventse

avge

Eventse e

Eventse ee



 






  2)(
)(

37

Where α, β, and γ are user-defined weights for weighted coverage, diversity,

and discontinuity respectively.

Note that different values can be assigned to the weights in E. These weights

are important for selecting test cases. They might be contradictory; that is, by

increasing one of these weights, say , the solution will improve in minimizing one

factor (discontinuity) while it might increase the other factors. These weights will

allow flexibility in using our proposed solution algorithms to suit the user’s

particular choices or requirements for different instances of the problem.

4.4 Incremental Simulated Annealing

Incremental Simulated Annealing is a mutation of the simultaneous-

operation simulated annealing. While the latter deals with the full set of test cases in

the test suite in a parallel manner. The incremental simulated annealing generates a

single test case containing maximum of K events at each iteration and adds the test

case to the final configuration of test suite. The algorithm makes use of the same

Energy function. However; at the end of each iteration, the event frequency,

coverage and diversity matrices are saved, to be used by the energy function on the

next iteration.

38

While testCases < N (Maximum number of test cases in the test

suite)

 repeat

 Increment testCases

 Initial configuration = Sequence of K events from the state

graph;

 Determine initial temperature T(0);

 Determine freezing temperature Tf ;

 while (T(i) > Tf and not converged) do

 repeat several times

 (multiple of the number and size of required test cases)

 Generate_function();

 save_best_sofar();

 T(i) =  * T(i);

 Endwhile

 Save event frequencies values

 Save diversity values

Endwhile

procedure Generate_function()

perturb();

if (OF1  0) then

 update() /* accept */

else

 if (random() < e
- OF1 / T(i)

) then

 update() /* accept */

 else

 reject_purturbation();

Figure 4.8- Outline of the Incremental SA algorithm.

Test Case K events

N Test cases

Figure 4.9- Structure of the Incremental SA algorithm.

39

4.5 Greedy Algorithm

The greedy algorithm is similar to the simultaneous-operation SA. What

makes this algorithm greedy is that it neutralizes the Monte Carlo algorithm by

accepting only the changes that decrease the energy of the objective function, and

not allowing any Uphill moves. The Algorithm is guided by the same objective

function and similar to the simultaneous SA it deals with the entire test suite instead

of generating a single test case after each iteration.

Initial configuration = Sequence of events from the state graph;

Determine initial temperature T(0);

Determine freezing temperature Tf ;

while (T(i) > Tf and not converged) do

 repeat several times

 (multiple of the number and size of required test cases)

 Generate_function();

 save_best_sofar();

 T(i) =  * T(i);

endwhile

procedure Generate_function()

perturb();

if (OF1  0) then

 update() /* accept */

else

 reject_purturbation();

Figure 4.10- Outline of the Greedy algorithm.

40

CHAPTER FIVE

Experimental Results and Discussion

5.1 Experimental Procedure

To examine our research question we base our experiment on two different

Finite State Machine models. First set of tests are done on an FSM representing a

small web 2.0 application Web Application 1 (WebApp-1), constituting consisting

of 36 States and having 86 events to generate an optimized test suite size of 50 test

cases; each test case has a maximum of 8,9,10,18 and 20 events for each iteration.

With the addition of 10% of the total events are fake events to introduce sequence

discontinuities. The FSM is depicted in figure 5.2. The second set of test is applied

on a bigger FSM representing a bigger Web Application (WebApp-2) consisting of

50 states and 270 events.

44

Figure 5.4 Discontinuity, lack of coverage, Lack of diversity value graphs of Simultaneous-

Operations Simulated Annealing Algorithm to generate having maximum 18 events per test

case, for WebApp-1.

Figure 5.5 - Energy value of the Objective Simultaneous-Operations Simulated Annealing

Algorithm Kmax= 18 for WebApp-1.

The graph depicted in figure 5.5 shows the overall slow convergence of the

energy value of the objective function.

The set of experiments is repeated using the Incremental Simulated

Annealing algorithm. The results show that the Incremental simulated annealing

algorithm successfully generates optimized test suites. However the performance of

0

0.5

1

1.5

2

2.5

3

5
8

7
1

8
4

9
7

1
1

0

1
2

3

1
3

6

1
4

9

1
6

2

1
7

5

1
8

8

2
0

1

En
e

rg
y

Iterations

Energy

45

the Simultaneous-Operations Simulated Annealing is superior to that of the

incremental algorithm. And this is because the Simultaneous- Operations Simulated

Annealing algorithm yields to lower energy values the same test suite size with test

cases of the same Kmax. Table 5.1 presents the corresponding energy values for the

test suites obtained with different values of Kmax test cases using the different

algorithms.

Repeating the experiment with the Greedy Algorithm results in an un

optimized test suite. This is because the Greedy algorithms fails to generate

continuous sequences of events in the test cases. The energy value converges fast

within the initial little iteration; however no farther improvements are obtained.

Figure 4.4 shows the graph of the energy values.

Figure 5.6- Objective function value Greedy Algorithm Kmax= 18

 Comparing the results obtained by simultaneous-operations SA, Incremental

SA algorithms show dramatic performance gain. The graphs show uphill movements

85

90

95

100

105

110

115

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55

En
e

rg
y

Iterations

Energy

46

followed by farther drop in the energy function values. These uphill moves allow the

solution to jump out of the local minima and head towards a global optimum

configuration. Whereas the results obtained by the greedy algorithm get stuck in a

local minima this is because the algorithm allows strict downhill moves.

Further examination of the results show, that simultaneous-operations SA

Algorithm converges to lower energy values compared to the values obtained by the

Incremental SA algorithm. And this is valid throughout the entire set of experiments

with different test case length. Table 5-1 shows the energy values for different test

case lengths while generating a test suite of 50 test cases.

Table 5.1 Energy Values for the three algorithms for different K values for

WebApp-1.

Max number of

events in Test cases

Simultaneous-

operation SA
Incremental SA Greedy Algorithm

k= 8 0.7505 0.8423 27.1832

k=9 0.7873 1.0421 30.2149

k=10 0.8596 1.1156 40.7051

k=18 1.2922 1.5328 94.8738

k=20 1.4265 1.6623 113.3677

.

47

Influenced by the previous observation we plan a new set of experiments to

study test suite composition and cost effectiveness on a bigger FSM having 50

States and 270 semantically interacting events leading transitions between

states.[Appendix IV]

Greedy, incremental simulated annealing and simultaneous-operation

simulated annealing algorithms are run, to generate an optimized test suite of 60 test

cases, each test case having a maximum of 20 events.

As to our intuition the simultaneous-operation simulated annealing

successfully optimizes the test suite configuration and performs better than the

incremental one. The energy function of the simultaneous-operation converges to a

lower energy value then the incremental simulated annealing, generating an

optimized test suite that insures diversity of test cases and continuous sequence of

events. The greedy algorithms failed to generate continuous sequence of events of

the maximum length of the test case. [Appendix VI] shows the obtained test case of

simultaneous-operation simulated annealing

48

Figure 5.7 -Energy values for test suites of size 60 with a test case length k=20 using

Simultaneous- Operations SA, Incremental SA and Greedy algorithms for

WebApp-2 .

0

0.5

1

1.5

2

2.5

Lo
g1

0
(E

n
e

rg
y)

49

CHAPTER SIX

Conclusion

We have presented a testing technique that addresses the complexity of Web

2.0 applications. We have also modeled the dynamic features of Web 2.0 using state

transition diagrams. Our model represents the important feature of the application as

weights that are assigned to events. Test cases are generated as sequences of

semantically interacting events using a simulated annealing algorithm. We also

formulated an objective function that is based on the capability of test cases to

provide high coverage of events, high diversity of events covered, and definite

continuity of events. The experimental results show that the proposed simulated

annealing algorithms generate more effective test cases than a previous hill-climbing

algorithm. However, simultaneous-operation simulated annealing algorithm gives

better results than the incremental simulated annealing.

The fact that simultaneous-operation simulated annealing has an edge over

the incremental algorithm is not unexpected. Since the incremental algorithm will be

bound to sequences generated in the preceding iterations and that previous decision

will be penalizing newer configurations. Whereas in the simultaneous operations

any decision is taken is not permanent and is subject to change during the remaining

cycle of iterations thus making the decision taking more flexible.

The proposed technique proves its capability to handle different graph sizes

and the strategy in inferring Finite State Machine out of the WEB 2.0 web

application minimizes the manual interference need to perform state based testing.

More importantly the set of the test cases generated by the simultaneous-

operation simulated annealing, which is associated with an optimal combination of

50

coverage and diversity values, provides us with confidence in the effectiveness of

these tests. This is a significant improvement over the previous work done on hill-

climbing algorithm which results in a local optimum solution.

51

References

[1] A.Marchetto, P. Tonella, and F. Ricca. “State-based testing of ajax

web applications,” in Proc. of IEEE International Conference on Software

Testing (ICST), Lillehammer, Norway, April 2008, pp. 121-130.

[2] A.Marchetto, P. Tonella. “Search-based testing of ajax web applications,”

in Proc. of IEEE Search Based Software Engineering, 2009 1st International

Symposium, 2009, pp. 3-12.

[3] T. O'Reilly, (2005, September 30). Design Patterns and Business Models

for the Next Generation of Software [Online]. Available:

 http://oreilly.com/web2/archive/what-is-web-20.html

[4] P. Hegaret, (2005, January 19). Document Object Model (DOM). [Online].

Available: http://www.w3.org/DOM

[5] A.Andrews, J.Offutt, and T.Alexander. “Testing web applications by

modeling with FSMs,” Software and System Modeling, vol.4 (3), 2005, pp.

326-345.

[6] A.Tarhini, N. Mansour, and H. Fouchal.“Regression testing web services

based applications,” IEEE International Conference Computer Systems and

Applications 2006, 2006, pp. 163-170.

[7] A.Tarhini, N. Mansour, and H. Fouchal. “Testing and regression testing for

web services based applications,” International Journal of Computing &

Information Technology (IJCIT), vol.2 (2), pp. 195 – 217, 2010.

[8] G. Di Lucca, A. Fasolino, A. F. Faralli, and U. Carlini. “Testing web

applications.”In Proc. of the International Conference on Software

Maintenance (ICSM), 2002, pp. 310-319.

[9] S. Elbaum, G. Rothermel, S. Karre, and M. Fisher. “Leveraging user session

data to support web application testing,” IEEE Transactions on Software

Engineering, 2005, vol.31 (3), pp. 187-202.

[10] Business Internet Group of San Francisco, (2003, Febreury 9), The BIG-SF

Report on Government Web Application Integrity. [Online]Available:

http://www.tealeaf.com/downloads/news/analyst report/BIG-

SF_Report_Gov_2003-05.pdf

52

[11] B. Fejes, (2004, April 19). Test Web Applications with HttpUnit. Available:

http://www.javaworld.com/javaworld/jw-04-2004/jw-0419-httpunit.html.

[12] S. Kirkpatrick, C. Gelatt, and M.Vecchi. “Optimization by simulated

 Annealing”, Science, vol. 220 (4598), pp. 671-680, 2006.

[13] B. Nikolik, “Test Diversity” Information and Software Technology, vol. 48

 (3), pp. 1083–1094, 2006.

[14] A. Kolawa, D.Huizinga, Automated Defect Prevention: Best Practices in

Software Management, New Jersey :Wiley-IEEE Computer Society Press,

2007, pp. 254.

[15] R. Ferguson, and B. Korel,(2006), “The chaining approach for software test

 data generation.” ACM Trans. Software Engineering Methodol, vol. 5 (1),

 pp.63-86, 2006.

[16] S.Petrenko, S. Boroday, and R. Groz. “Confirming configurations in EFSM

 testing,” IEEE Trans. Software Engineering, vol. 30, pp. 29-42, 2004.

[17] M.Memon, M. Pollack, and L. Soffa. “Hierarchical GUI test case generation

using automated planning,” IEEE Trans. Software Engineering, vol. 27 (2),

pp. 144–155, 2001.

53

APPENDIX

APPENDIX I Iteration traces for generating a test suite of 50 test cases with

maximum test case length K=18 using Simultaneous Operations Simulated

annealing using the FSM of WebApp-1.

Iteration Discontinuity
Lack of

Diversity Lack of Coverage Energy

1 63.5 2.520488131 0.475 66.4954881

2 33.5 4.229256486 0.48125 38.2105065

3 15 4.859821028 0.475 20.334821

4 8 5.542144027 0.487666667 14.0298107

5 4 5.861451221 0.475 10.3364512

6 2 6.327152631 0.494256757 8.82140939

7 2 6.825896309 0.515140845 9.34103715

8 2 7.108998553 0.501027397 9.61002595

9 1.5 7.571516388 0.507986111 9.5795025

10 0.5 7.948686081 0.5225 8.97118608

11 0.5 8.546950358 0.501027397 9.54797776

12 0 8.448985763 0.501027397 8.95001316

13 0 8.37364081 0.537867647 8.91150846

14 0 8.094850858 0.501027397 8.59587826

15 0 8.16121072 0.494256757 8.65546748

16 0 8.156537894 0.537867647 8.69440554

17 0 8.024048879 0.545895522 8.5699444

18 0 7.560860429 0.494256757 8.05511719

19 0 7.173761943 0.48125 7.65501194

20 0 7.440622314 0.494256757 7.93487907

21 0 7.618422436 0.494256757 8.11267919

22 0 7.513179115 0.494256757 8.00743587

23 0 7.318836002 0.475 7.793836

24 0 7.734039075 0.501027397 8.23506647

25 0 7.593771159 0.501027397 8.09479856

26 0 7.51592379 0.507986111 8.0239099

27 0 7.606353293 0.515140845 8.12149414

28 0 7.678646392 0.507986111 8.1866325

29 0 7.37031956 0.530072464 7.90039202

30 0 7.242089507 0.515140845 7.75723035

31 0 6.962155587 0.487666667 7.44982225

54

32 0 6.679285921 0.48125 7.16053592

33 0 6.411151255 0.48125 6.89240126

34 0 6.240321339 0.487666667 6.72798801

35 0 6.167990793 0.48125 6.64924079

36 0 6.013244583 0.48125 6.49449458

37 0 5.586847091 0.475 6.06184709

38 0 5.580578861 0.487666667 6.06824553

39 0 5.152825479 0.48125 5.63407548

40 0 4.812910805 0.487666667 5.30057747

41 0 5.136059815 0.475 5.61105981

42 0 4.768947517 0.475 5.24394752

43 0 4.694716224 0.48125 5.17596622

44 0 4.303093122 0.475 4.77809312

45 0 3.87593349 0.487666667 4.36360016

46 0 3.871092923 0.475 4.34609292

47 0 3.773308948 0.475 4.24830895

48 0 3.536998787 0.48125 4.01824879

49 0 3.256203375 0.475 3.73120338

50 0 2.995890589 0.475 3.47089059

51 0 3.000268391 0.475 3.47526839

52 0 2.754153304 0.475 3.2291533

53 0 2.668868753 0.48125 3.15011875

54 0 2.578102097 0.475 3.0531021

55 0 2.484272614 0.48125 2.96552261

56 0 2.444199341 0.48125 2.92544934

57 0 2.367564238 0.475 2.84256424

58 0 2.177810924 0.475 2.65281092

59 0 2.194677749 0.475 2.66967775

60 0 2.214804827 0.475 2.68980483

61 0 2.017823189 0.475 2.49282319

62 0 1.907972856 0.475 2.38297286

63 0 1.951694244 0.475 2.42669424

64 0 1.766454194 0.48125 2.24770419

65 0 1.874596069 0.475 2.34959607

66 0 1.798363261 0.475 2.27336326

67 0 1.686078415 0.475 2.16107841

68 0 1.535125539 0.475 2.01012554

69 0 1.552130929 0.475 2.02713093

70 0 1.484624673 0.475 1.95962467

71 0 1.438874706 0.475 1.91387471

72 0 1.418753122 0.475 1.89375312

73 0 1.413899013 0.475 1.88889901

74 0 1.42007409 0.475 1.89507409

75 0 1.416989915 0.475 1.89198992

76 0 1.39655305 0.475 1.87155305

55

77 0 1.396105447 0.475 1.87110545

78 0 1.317805153 0.475 1.79280515

79 0 1.32772754 0.475 1.80272754

80 0 1.300138616 0.475 1.77513862

81 0 1.259110964 0.475 1.73411096

82 0 1.246639651 0.475 1.72163965

83 0 1.250644002 0.475 1.725644

84 0 1.192837131 0.475 1.66783713

85 0 1.260103337 0.475 1.73510334

86 0 1.274405909 0.475 1.74940591

87 0 1.197021479 0.475 1.67202148

88 0 1.17008992 0.475 1.64508992

89 0 1.183368252 0.475 1.65836825

90 0 1.167951378 0.475 1.64295138

91 0 1.143617252 0.475 1.61861725

92 0 1.166344898 0.475 1.6413449

93 0 1.170623945 0.475 1.64562394

94 0 1.096179921 0.475 1.57117992

95 0 1.136490396 0.475 1.6114904

96 0 1.085292781 0.475 1.56029278

97 0 1.124882403 0.475 1.5998824

98 0 1.064946205 0.475 1.53994621

99 0 1.114836499 0.475 1.5898365

100 0 1.066119327 0.475 1.54111933

101 0 1.08586851 0.475 1.56086851

102 0 1.055514292 0.475 1.53051429

103 0 1.023650536 0.475 1.49865054

104 0 1.048384672 0.475 1.52338467

105 0 1.013834513 0.475 1.48883451

106 0 1.014450797 0.475 1.4894508

107 0 1.005788457 0.475 1.48078846

108 0 0.981891247 0.475 1.45689125

109 0 0.988236014 0.475 1.46323601

110 0 0.979979806 0.475 1.45497981

111 0 0.96778635 0.475 1.44278635

112 0 0.979979806 0.475 1.45497981

113 0 0.96778635 0.475 1.44278635

114 0 0.939606524 0.475 1.41460652

115 0 0.942263456 0.475 1.41726346

116 0 0.924180946 0.475 1.39918095

117 0 0.915347158 0.475 1.39034716

118 0 0.929575398 0.475 1.4045754

119 0 0.908493489 0.475 1.38349349

120 0 0.911241143 0.475 1.38624114

121 0 0.921471877 0.475 1.39647188

56

122 0 0.921471877 0.475 1.39647188

123 0 0.910555007 0.475 1.38555501

124 0 0.918754821 0.475 1.39375482

125 0 0.900894234 0.475 1.37589423

126 0 0.900894234 0.475 1.37589423

127 0 0.893929762 0.475 1.36892976

128 0 0.878413582 0.475 1.35341358

129 0 0.869833559 0.475 1.34483356

130 0 0.863342586 0.475 1.33834259

131 0 0.867675297 0.475 1.3426753

132 0 0.859715313 0.475 1.33471531

133 0 0.858260112 0.475 1.33326011

134 0 0.84282882 0.475 1.31782882

135 0 0.856802439 0.475 1.33180244

136 0 0.851680938 0.475 1.32668094

137 0 0.851680938 0.475 1.32668094

138 0 0.84874049 0.475 1.32374049

139 0 0.853879629 0.475 1.32887963

140 0 0.84578982 0.475 1.32078982

141 0 0.851680938 0.475 1.32668094

142 0 0.843570045 0.475 1.31857004

143 0 0.84578982 0.475 1.32078982

144 0 0.842086943 0.475 1.31708694

145 0 0.84282882 0.475 1.31782882

146 0 0.839112877 0.475 1.31411288

147 0 0.839112877 0.475 1.31411288

148 0 0.833882738 0.475 1.30888274

149 0 0.83163118 0.475 1.30663118

150 0 0.834631907 0.475 1.30963191

151 0 0.840601225 0.475 1.31560123

152 0 0.833882738 0.475 1.30888274

153 0 0.833132895 0.475 1.30813289

154 0 0.832382376 0.475 1.30738238

155 0 0.827864977 0.475 1.30286498

156 0 0.824081562 0.475 1.29908156

157 0 0.822563323 0.475 1.29756332

158 0 0.821042277 0.475 1.29604228

159 0 0.822563323 0.475 1.29756332

160 0 0.818755409 0.475 1.29375541

161 0 0.818755409 0.475 1.29375541

162 0 0.821042277 0.475 1.29604228

163 0 0.821042277 0.475 1.29604228

164 0 0.817991699 0.475 1.2929917

165 0 0.819518407 0.475 1.29451841

166 0 0.821803152 0.475 1.29680315

57

167 0 0.823322792 0.475 1.29832279

168 0 0.817991699 0.475 1.2929917

169 0 0.819518407 0.475 1.29451841

170 0 0.821803152 0.475 1.29680315

171 0 0.820280696 0.475 1.2952807

172 0 0.820280696 0.475 1.2952807

173 0 0.818755409 0.475 1.29375541

174 0 0.818755409 0.475 1.29375541

175 0 0.818755409 0.475 1.29375541

176 0 0.818755409 0.475 1.29375541

177 0 0.817991699 0.475 1.2929917

178 0 0.817227276 0.475 1.29222728

179 0 0.819518407 0.475 1.29451841

180 0 0.817991699 0.475 1.2929917

181 0 0.818755409 0.475 1.29375541

182 0 0.818755409 0.475 1.29375541

183 0 0.818755409 0.475 1.29375541

184 0 0.818755409 0.475 1.29375541

185 0 0.818755409 0.475 1.29375541

186 0 0.818755409 0.475 1.29375541

187 0 0.817991699 0.475 1.2929917

188 0 0.817991699 0.475 1.2929917

189 0 0.818755409 0.475 1.29375541

190 0 0.817991699 0.475 1.2929917

191 0 0.817991699 0.475 1.2929917

192 0 0.817991699 0.475 1.2929917

193 0 0.817991699 0.475 1.2929917

194 0 0.817227276 0.475 1.29222728

195 0 0.817227276 0.475 1.29222728

196 0 0.817991699 0.475 1.2929917

197 0 0.817227276 0.475 1.29222728

198 0 0.817227276 0.475 1.29222728

199 0 0.817227276 0.475 1.29222728

200 0 0.817227276 0.475 1.29222728

201 0 0.817227276 0.475 1.29222728

202 0 0.817227276 0.475 1.29222728

203 0 0.817227276 0.475 1.29222728

204 0 0.817227276 0.475 1.29222728

205 0 0.817227276 0.475 1.29222728

58

APPENDIX II The test suite of 50 test cases with maximum test case length K=18

obtained using Simultaneous Operations Simulated annealing, using the small graph

of Web Application 1.

Test case# Event Sequences

1 55--53--55--53--58--61--51--53--57--59--2--15--17--20--17--21--24--25

2 50--48--43--46--49--41--3--52--58--61--52--56--83--81--83--82--84--84

3 84--19--24--25--16--18--20--16--18--22--25--17--21--24--26--29--32--84

4 45--41--1--7--11--14--10--9--14--11--13--4--64--67--69--71--83--83

5 48--43--46--50--47--42--43--46--49--41--2--15--17--21--24--26--30--35

6 19--24--27--41--1--7--11--13--1--6--5--9--13--4--63--0--5--84

7 43--45--41--3--51--53--57--59--2--15--17--22--25--17--20--16--19--23

8 82--83--81--84--72--66--75--68--73--74--64--68--72--63--1--6--5--84

9 82--19--24--26--31--36--28--26--30--34--39--36--31--37--33--32--40--29

10 48--44--50--47--42--43--45--42--43--46--49--42--43--45--42--43--46--49

11 81--84--58--61--51--54--62--59--4--63--4--63--2--15--16--18--21--23

12 20--16--18--22--26--30--34--38--30--35--40--29--32--40--31--36--29--32

13 18--22--27--41--3--52--55--53--57--59--2--15--16--19--24--26--29--32

14 33--32--40--30--35--40--28--27--41--4--64--68--73--74--63--0--5--9

15 76--69--70--68--73--74--65--70--68--73--74--65--71--69--71--69--71--84

16 60--55--54--61--51--54--61--52--57--59--1--7--11--13--4--66--75--67

17 37--34--39--36--31--37--34--39--37--35--40--31--36--30--34--39--37--33

18 72--65--71--69--70--68--72--66--75--68--72--66--75--68--72--65--71--82

19 58--62--60--57--59--4--63--3--52--55--54--61--51--54--62--60--56--83

20 38--30--34--38--31--36--28--27--41--3--52--55--54--61--51--53--56--82

21 8--12--13--1--7--11--13--0--5--9--13--1--6--5--9--14--10--84

22 20--16--18--22--26--28--27--42--44--49--42--44--50--48--43--46--50--47

23 83--84--82--58--62--60--58--62--59--3--51--54--61--51--54--62--60--56

24 81--84--81--8--12--13--0--5--9--13--4--63--1--8--12--14--10--81

25 81--84--82--81--55--54--62--59--3--52--55--53--58--62--59--1--6--5

26 48--44--50--47--42--44--49--41--2--15--16--19--23--15--17--21--23--82

27 39--37--34--38--31--36--30--35--40--28--25--17--21--24--25--17--22--27

28 45--42--43--45--42--43--46--50--48--44--49--41--1--6--5--9--14--10

29 73--74--64--68--72--66--75--68--72--63--3--51--53--58--61--51--53--56

30 73--75--67--69--70--68--72--66--74--65--71--69--70--67--69--70--67--82

31 33--32--40--30--35--40--28--25--17--21--24--25--16--19--23--15--17--20

32 37--34--38--30--33--32--40--31--36--28--25--17--20--16--18--21--23--81

33 52--55--54--61--52--57--59--4--66--75--67--69--70--67--83--84--84--83

34 34--39--37--35--40--28--27--41--0--5--9--13--1--8--12--14--11--14

35 57--60--57--60--57--60--57--60--55--53--57--59--4--66--76--81--84--82

36 48--44--50--47--41--4--65--70--68--72--66--74--66--74--63--1--7--10

37 8--12--14--11--13--1--7--11--14--11--13--3--52--58--61--51--53--56

59

38 81--82--8--12--14--10--9--13--4--66--74--63--3--52--58--61--52--56

39 84--19--23--15--16--18--20--16--18--22--26--28--25--16--18--21--23--84

40 81--18--20--17--21--24--27--41--4--64--68--73--76--69--70--67--83--83

41 46--50--47--42--44--50--47--41--3--51--54--62--59--2--15--16--19--23

42 76--69--71--69--70--68--72--66--74--63--1--8--12--13--0--5--83--83

43 48--43--46--49--41--1--7--10--9--13--4--63--2--15--17--22--26--29

44 8--12--14--11--13--0--5--9--13--3--52--55--53--58--62--60--56--84

45 18--21--24--26--30--35--40--28--26--31--37--34--39--36--31--36--30--33

46 45--42--44--50--48--44--49--42--44--50--47--41--4--65--70--67--69--71

47 48--43--45--41--4--64--67--69--70--68--73--74--66--74--65--71--82--81

48 2--15--17--22--26--28--26--28--27--41--4--64--68--73--75--68--73--76

49 55--54--62--60--57--60--58--62--59--1--8--12--14--10--9--14--10--84

50 37--34--38--31--36--28--26--28--26--29--32--40--31--36--31--37--33--32

60

APPENDIX III Iteration traces for generating a test suite of 60 test cases with

maximum test case length K=20 using Simultaneous Operations Simulated

annealing using the FSM of WebApp-2.

Iteration Discontinuity
 Lack of

Diversity
Lack of

Coverage Energy

1 130.5 2.351254874 0.468925234 133.3201801

2 84 2.888494328 0.473349057 87.36184338

3 66.5 3.065680917 0.494334975 70.06001589

4 52 3.576786195 0.498014888 56.07480108

5 42.5 3.669250534 0.487135922 46.65638646

6 35.5 3.803077633 0.503007519 39.80608515

7 29 3.915788488 0.510687023 33.42647551

8 26.5 3.820785192 0.504271357 30.82505655

9 24 3.690988957 0.503007519 28.19399648

10 22.5 3.514740315 0.500498753 26.51523907

11 20 3.491188835 0.491911765 23.9831006

12 19.5 3.753451676 0.514615385 23.76806706

13 17.5 3.516162608 0.506818182 21.52298079

14 16.5 3.514740315 0.509390863 20.52413118

15 15.5 3.386502544 0.504271357 19.3907739

16 14 3.387978672 0.495555556 17.88353423

17 13 3.341167383 0.504271357 16.84543874

18 13 3.213004744 0.503007519 16.71601226

19 12.5 3.272369093 0.503007519 16.27537661

20 12 3.274660209 0.510687023 15.78534723

21 10.5 3.385764239 0.511989796 14.39775404

22 9.5 3.205214421 0.500498753 13.20571317

23 9 3.185655267 0.510687023 12.69634229

24 8.5 3.21844675 0.503007519 12.22145427

25 8 3.238579856 0.50175 11.74032986

26 7 3.259355685 0.514615385 10.77397107

27 7 3.116632715 0.499253731 10.61588645

28 6 3.059150124 0.511989796 9.57113992

29 6 3.098128384 0.508101266 9.60622965

30 6 3.220776224 0.518604651 9.739380875

31 5.5 3.044404619 0.526771654 9.071176272

32 5.5 3.095706621 0.509390863 9.105097484

33 5.5 3.063233501 0.518604651 9.081838152

34 5 3.031237286 0.521298701 8.552535987

35 5 3.193493304 0.529551451 8.723044755

36 5 2.982180324 0.515938303 8.498118627

37 4.5 3.080324574 0.52539267 8.105717244

61

38 4.5 3.013038248 0.513299233 8.026337481

39 4.5 3.086000564 0.515938303 8.101938868

40 4.5 3.104577183 0.515938303 8.120515486

41 3.5 2.945063579 0.519948187 6.965011765

42 3 2.903170591 0.514615385 6.417785976

43 3 2.978825185 0.510687023 6.489512208

44 2.5 2.93315521 0.508101266 5.941256475

45 2.5 2.930597121 0.514615385 5.945212505

46 2.5 2.968737018 0.511989796 5.980726814

47 2.5 2.928890487 0.509390863 5.93828135

48 2.5 2.922909421 0.521298701 5.944208122

49 2.5 2.920342357 0.521298701 5.941641058

50 2.5 2.903170591 0.518604651 5.921775243

51 2.5 2.820177208 0.509390863 5.829568071

52 2 2.7736978 0.510687023 5.284384822

53 2 2.8501578 0.514615385 5.364773184

54 2 2.88503024 0.513299233 5.398329472

55 2 2.845768698 0.509390863 5.355159561

56 2 2.837851209 0.511989796 5.349841005

57 2 2.764669869 0.517268041 5.28193791

58 2 2.80951944 0.513299233 5.322818673

59 1.5 2.74925435 0.508101266 4.757355616

60 1.5 2.750163538 0.508101266 4.758264803

61 1.5 2.774598977 0.509390863 4.78398984

62 1.5 2.706178021 0.494334975 4.700512997

63 1.5 2.67271388 0.503007519 4.675721399

64 1 2.666158188 0.498014888 4.164173076

65 1 2.703405164 0.498014888 4.201420053

66 1 2.67271388 0.496782178 4.169496058

67 1 2.653940369 0.494334975 4.148275345

68 1 2.663343666 0.495555556 4.158899222

69 1 2.649226205 0.499253731 4.148479936

70 1 2.630285057 0.496782178 4.127067236

71 1 2.592951886 0.491911765 4.084863651

72 0.5 2.621716896 0.499253731 3.620970627

73 0.5 2.621716896 0.494334975 3.616051871

74 0.5 2.621716896 0.498014888 3.619731784

75 0.5 2.617899823 0.503007519 3.620907342

76 0.5 2.624576058 0.500498753 3.625074811

77 0.5 2.652055709 0.496782178 3.648837887

78 0.5 2.591987555 0.495555556 3.58754311

79 0.5 2.583292373 0.496782178 3.580074551

80 0.5 2.581356133 0.494334975 3.575691108

81 0.5 2.589092405 0.494334975 3.583427381

82 0.5 2.572625018 0.494334975 3.566959993

62

83 0.5 2.586194015 0.495555556 3.581749571

84 0.5 2.56581361 0.493120393 3.558934003

85 0.5 2.566787775 0.496782178 3.563569953

86 0.5 2.551156499 0.500498753 3.551655252

87 0.5 2.515631031 0.495555556 3.511186586

88 0.5 2.507668137 0.498014888 3.505683025

89 0 2.506670996 0.496782178 3.003453174

90 0 2.505673459 0.494334975 3.000008434

91 0 2.513642672 0.493120393 3.006763065

92 0 2.502678462 0.498014888 3.00069335

93 0 2.470505916 0.494334975 2.964840892

94 0 2.481612275 0.493120393 2.974732668

95 0 2.460365721 0.491911765 2.952277486

96 0 2.456297922 0.490709046 2.947006969

97 0 2.444053903 0.493120393 2.937174297

98 0 2.429691232 0.489512195 2.919203427

99 0 2.419379979 0.488321168 2.907701147

100 0 2.420413081 0.485956416 2.906369498

101 0 2.395495665 0.485956416 2.881452082

102 0 2.402789937 0.485956416 2.888746354

103 0 2.428662077 0.488321168 2.916983245

104 0 2.395495665 0.484782609 2.880278274

105 0 2.385036579 0.485956416 2.870992995

106 0 2.378739053 0.487135922 2.865874976

107 0 2.386084551 0.484782609 2.870867159

108 0 2.370316326 0.487135922 2.857452248

109 0 2.355504083 0.487135922 2.842640005

110 0 2.344866624 0.484782609 2.829649232

111 0 2.353380437 0.487135922 2.84051636

112 0 2.357625815 0.487135922 2.844761737

113 0 2.363979586 0.488321168 2.852300754

114 0 2.353380437 0.488321168 2.841701605

115 0 2.361863562 0.488321168 2.850184729

116 0 2.348062921 0.487135922 2.835198844

117 0 2.358685965 0.484782609 2.843468574

118 0 2.353380437 0.484782609 2.838163046

119 0 2.337391598 0.485956416 2.823348015

120 0 2.325596587 0.484782609 2.810379195

121 0 2.328819332 0.487135922 2.815955255

122 0 2.328819332 0.484782609 2.813601941

123 0 2.321292632 0.484782609 2.806075241

124 0 2.320215396 0.484782609 2.804998005

125 0 2.318059422 0.484782609 2.802842031

126 0 2.316980683 0.484782609 2.801763291

127 0 2.321292632 0.482451923 2.803744555

63

128 0 2.319137659 0.482451923 2.801589582

129 0 2.298564657 0.481294964 2.779859621

130 0 2.300738899 0.481294964 2.782033863

131 0 2.293120032 0.481294964 2.774414996

132 0 2.288755007 0.481294964 2.770049971

133 0 2.296388356 0.482451923 2.778840279

134 0 2.293120032 0.482451923 2.775571956

135 0 2.288755007 0.481294964 2.770049971

136 0 2.292029555 0.481294964 2.773324519

137 0 2.285475767 0.481294964 2.766770731

138 0 2.284381641 0.481294964 2.765676605

139 0 2.285475767 0.481294964 2.766770731

140 0 2.283286991 0.481294964 2.764581955

141 0 2.281096114 0.482451923 2.763548037

142 0 2.279999887 0.481294964 2.761294851

143 0 2.276708036 0.481294964 2.758003

144 0 2.281096114 0.481294964 2.762391078

145 0 2.281096114 0.481294964 2.762391078

146 0 2.281096114 0.481294964 2.762391078

147 0 2.275609695 0.481294964 2.756904659

148 0 2.276708036 0.481294964 2.758003

149 0 2.276708036 0.481294964 2.758003

150 0 2.276708036 0.481294964 2.758003

151 0 2.274510823 0.481294964 2.755805787

152 0 2.275609695 0.481294964 2.756904659

153 0 2.275609695 0.481294964 2.756904659

154 0 2.275609695 0.481294964 2.756904659

155 0 2.275609695 0.481294964 2.756904659

156 0 2.276708036 0.481294964 2.758003

157 0 2.277805848 0.481294964 2.759100812

158 0 2.278903132 0.481294964 2.760198096

159 0 2.277805848 0.481294964 2.759100812

160 0 2.274510823 0.481294964 2.755805787

161 0 2.274510823 0.481294964 2.755805787

162 0 2.274510823 0.481294964 2.755805787

163 0 2.274510823 0.481294964 2.755805787

164 0 2.27341142 0.481294964 2.754706384

165 0 2.27341142 0.481294964 2.754706384

166 0 2.272311485 0.481294964 2.753606449

167 0 2.272311485 0.481294964 2.753606449

168 0 2.272311485 0.481294964 2.753606449

169 0 2.272311485 0.481294964 2.753606449

170 0 2.272311485 0.481294964 2.753606449

171 0 2.272311485 0.481294964 2.753606449

172 0 2.272311485 0.481294964 2.753606449

64

173 0 2.272311485 0.481294964 2.753606449

174 0 2.272311485 0.481294964 2.753606449

175 0 2.272311485 0.481294964 2.753606449

176 0 2.272311485 0.481294964 2.753606449

177 0 2.272311485 0.481294964 2.753606449

178 0 2.272311485 0.481294964 2.753606449

179 0 2.272311485 0.481294964 2.753606449

180 0 2.272311485 0.481294964 2.753606449

181 0 2.272311485 0.481294964 2.753606449

182 0 2.272311485 0.481294964 2.753606449

183 0 2.272311485 0.481294964 2.753606449

184 0 2.272311485 0.481294964 2.753606449

185 0 2.272311485 0.481294964 2.753606449

186 0 2.272311485 0.481294964 2.753606449

187 0 2.272311485 0.481294964 2.753606449

188 0 2.272311485 0.481294964 2.753606449

189 0 2.272311485 0.481294964 2.753606449

65

APPENDIX IV: The test suite of 60 test cases with maximum test case length K=20

obtained using Simultaneous Operations Simulated Annealing on WebApp-2

Test Case # Event Sequences

1 243--220--132--137--141--13--244--228--125--169--99--150--236--35--81--69--138--172--187

2 221--209--233--243--220--133--145--149--129--47--69--137--146--172--195--204--79--15

3 267--238--40--35--80--47--67--104--96--103--157--241--196--225--77--85--1--18--269--266

4 269--266--232--217--81--69--137--144--115--125--167--68--134--176--3--7--16--23

5 207--133--141--11--141--13--243--215--49--52--46--54--58--65--99--148--84--116

6 12--218--101--73--77--86--107--161--156--160--138--169--94--74--99--149--132--135

7 269--179--122--115--125--172--190--54--58--67--104--93--35--80--47--69--138--164

8 132--137--141--12--214--34--43--17--35--80--47--65--93--33--24--7--16--23

9 267--183--220--134--182--208--192--103--154--107--163--181--196--224--74--92--29--48

10 161--156--162--173--156--161--155--151--119--115--125--167--65--96--102--104--98--128

11 268--242--209--232--218--103--157--241--192--103--157--239--50--71--27--18--1--18

12 227--99--148--84--119--115--126--181--192--102--104--94--72--41--44--46--55--72

13 266--269--269--266--267--224--70--1--19--20--0--3--6--14--23--0--3--6-265--264

14 268--62--57--47--62--59--77--88--114--82--1--19--22--30--0--3--7--15--265--269

15 227--97--115--122--115--125--170--141--12--220--131--87--110--107--163--183--217--79

16 240--54--58--69--138--167--68--134--182--208--193--115--121--112--134--182--202--48

17 268--269--269--267--267--228--125--169--94--74--98--133--143--71--28--40--34--42

18 12--221--208--192--103--156--160--138--171--161--157--244--233--244--231--196--231--187

19 162--173--157--244--233--242--204--81--64--83--87--112--131--86--107--159--13--234

20 268--232--221--207--131--87--112--131--88--114--84--117--35--80--46--53--1--18

21 218--103--156--159--13--242--207--130--83--88--114--84--118--82--1--19--22--30

22 170--145--149--132--138--171--162--174--169--97--115--123--150--242--208--194--181--186

23 266--159--13--241--196--229--150--243--215--50--74--98--131--87--110--106--87--108

24 125--171--163--179--123--149--133--144--115--123--150--240--55--74--98--134--179--120

25 227--96--103--157--243--221--208--191--81--61--32--0--3--6--14--24--6--14

26 230--152--150--241--195--204--81--65--96--102--104--91--25--36--1--19--21--26

27 159--12--220--129--47--62--58--69--138--172--196--231--194--180--174--170--143--70

28 266--268--268--232--221--209--225--77--88--115--121--109--104--93--34--44--46--53

29 203--54--58--63--76--55--74--90--2--4--10--22--31--37--19--21--28--38

30 267--266--233--242--209--228--121--112--132--137--141--11--146--169--89--1--19--20

31 162--174--170--146--172--195--205--103--156--160--138--172--193--115--124--152--149--12

32 121--109--104--98--132--138--172--195--209--232--220--133--145--150--242--199--7--16

33 269--226--83--88--114--84--118--84--119--115--126--182--209--233--244--233--243--212

34 230--152--150--244--228--121--112--131--88--115--124--151--118--83--86--106--86--105

35 170--146--166--49--52--47--69--138--172--195--205--103--154--107--163--177--40--33

36 106--87--111--113--0--2--4--12--216--53--0--3--7--17--35--80--45--266--266--269

37 169--95--77--87--110--107--159--13--244--232--216--54--58--68--134--181--189--49

38 268--228--126--180--174--167--66--103--156--159--13--241--190--54--58--61--33--25--36--26

39 229--149--134--179--123--150--244--229--150--241--196--227--99--150--241--188--34--42-25

40 180--173--157--235--2--4--11--145--150--244--231--194--181--196--231--195--206--113

66

41 191--81--68--133--146--171--160--137--141--13--241--195--208--189--50--74--92--26

42 162--173--155--152--148--84--117--35--81--63--76--54--57--46--55--74--95--75-265--249

43 136--107--163--182--208--194--182--209--228--123--148--83--88--113--0--2--4--9

44 126--179--126--180--173--157--243--221--208--195--205--101--71--28--41--43--17--32

45 179--126--180--174--171--160--136--107--163--183--217--81--63--77--86--106--86--105

46 151--117--32--0--2--4--11--146--167--69--137--146--167--66--103--157--237--37

47 269--183--217--81--66--102--104--98--134--180--174--168--76--54--57--47--66--100

48 267--266-171--161--155--152--149--134--178--47--62--59--76--55--74--96--101--72--41--42

49 227--97--115--125--167--65--99--149--134--181--194--183--219--114--84--117--35--78--269

50 194--183--221--207--131--87--110--107--163--181--196--228--124--151--118--83--86--105

51 269--265--2--4--11--143--73--76--54--58--62--59--76--55--71--28--39--31--37--18--269--269

52 230--152--149--131--86--107--158--0--2--5--14--24--6--92--29--50--74--96--100--18

53 11--141--11--141--11--145--149--131--86--107--159--13--243--221--207--134--183--218--101

54 267--232--220--129--47--66--103--156--163--183--220--134--179--122--115--125--167--61--3

55 267--171--162--174--167--62--58--68--132--137--146--167--66--102--104--93--35--79--15--26

56 267--269--227--91--24--7--17--32--1--19--21--28--41--43--16--23--205--102--104--91

57 160--137--141--12--217--80--47--69--138--169--99--150--236--34--43--17--33--24--7--15

58 226--84--119--115--126--181--191--81--67--104--98--134--183--217--79--17--34--43--16--24

59 243--220--132--135--216--54--58--69--137--141--13--244--231--195--201--35--79--17--34--42

60 118--83--88--115--126--179--126--179--126--181--189--50--73--76--54--58--65--99--149--127

