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Data Collection in Wireless Sensor Networks using
UAV and Compressive Data Gathering

Dariush Ebrahimi, Sanaa Sharafeddine, Pin-Han Ho, Chadi Assi

Abstract—Fifth generation wireless networks are expected to
provide advanced capabilities and create new markets spanning a
wide range of use cases. Among these, massive IoT is standing out
with the proliferation of sensors and wearable devices that con-
tinuously monitor and transmit data for further processing. This
paper proposes a novel data collection technique using Unmanned
Aerial Vehicles (UAVs) in dense wireless sensor networks (WSNs)
using projection-based Compressive Data Gathering (CDG) as
a solution methodology. CDG is utilized to aggregate data en
route from sets of sensor nodes to a set of projection nodes
(heads) in order to notably reduce the number of transmissions
leading to energy savings and extended WSN lifetime. The UAVs
forward the gathered data from heads to a remote sink to enhance
efficiency by avoiding long range transmissions from heads to
the sink or multi-hop communications among sensors to the
sink. We formulate a joint optimization problem that captures
clustering, heads selection, routing trees construction, and UAV
trajectory planning. In order to overcome the complexity of
the joint optimization problem, we decompose the problem into
separate parts and propose a heuristic to solve each subproblem
for large-scale network scenarios.

I. INTRODUCTION

5G systems are designed to accommodate tremendous im-
provements in operational aspects of multitude vertical ser-
vices such as smart cities, autonomous cars, and e-health. The
5G technology promises ubiquitous support of smart services
enabled by massive amounts of sensors that function within
an interworking framework [1]. Reducing energy consumption
of the sensors is very critical in extending the lifetime of
the whole network. Oil and gas pipeline monitoring, natural
disaster predictions, fire detection, agricultural and environ-
mental monitoring all involve deployment of sensing devices
in hard-to-reach areas. Unmanned aerial vehicles (UAVs) have
recently gained popularity in the telecom industry. UAVs
serve as an effective way to collect data from wireless sensor
nodes dispersed in rural and hard-to-reach areas. Furthermore,
UAVs’ ability to establish line of sight connection with sensors
improve the wireless channel quality between the UAV and the
sensor thus boosting data rate and reducing energy consump-
tion. In many of their applications, sensor nodes measure and
send collected data to a central unit (eg. sink) for processing
either directly or through multiple hops. In the case of massive
sensor deployment, there is an inevitable need for innovative
data collection solutions that can further save energy for the
survival and longevity of WSNs. Hence, in this paper, we
address the problem of gathering data from large scale WSN
with randomly deployed sensors in the most energy-efficient
manner. To this end, a UAV is deployed to fly over the area
of interest, collect, and deliver measured data to the sink;
thus, saving sensor energy needed for multiple data relaying to
the sink. UAVs are, an effective and energy-efficient solution

for sensors placed in hard-to-reach areas where no direct
connection exists from any sensor node to the sink.

Previous research on WSN explored using UAVs for energy-
efficient data collection [2,3] by dividing the region into
clusters, each with a designated cluster head (CH). Nodes
within a cluster transmit their data to the CH when UAVs
eventually deliver the collected data to the sink. In this work,
we focus on achieving major energy-savings to suit large-
scale networks through incorporating the benefits of UAV-
assisted data collection together with those of Compressive
Data Gathering (CDG). With CDG, rather than receiving
readings from all sensors, the sink receives few encoded sums
of all the readings, from which the sink will be able to
recover (decode) the original data, as long as the readings
can be transformed or compressed in some sparse orthonormal
transform domain [4,5]. In our work, we suppose the original
data is compressible in some transform domain, and it is
recovered at the sink by receiving sparse projections [6]. Each
projection is gathered by establishing forwarding tree from
nodes in one cluster to the CH, where subsequently all the
gathered data at the CHs is sent through UAV to the sink. Upon
collecting all projections, the sink then attempts to recover the
original data [7]. Therefore, instead of transmitting sensor’s
reading from each node to the CH in a separate packet through
multi-hop, the data is aggregated en-route to the CH. Hence,
we may construct an efficient aggregation tree to gather data
for each cluster such that it minimizes the total number of
transmissions and thus minimizing the energy consumption of
sensor nodes. This requires the construction of an aggregation
tree per cluster to minimize the total number of transmissions
and reduce the sensors total energy consumption. Our problem
becomes of jointly clustering the network, choosing the right
CHs, finding the UAV trajectory over the chosen CHs, and
constructing aggregation trees based on CDG technique, such
that the total energy consumption of the sensor nodes and the
UAV trajectory are minimized. We mathematically formulate
this problem as a mixed integer linear program (MILP), and
owing to its complexity, we decompose the problem into four
complementary disjoint subproblems. After underlining the
complexity of each part, we present low-complexity algorithms
to solve the problem efficiently for large scale networks.
Finally, we demonstrate the performance and efficiency of our
methods through simulation. The rest of the paper is organized
as follows. Section II presents the system model, a brief
description of the projection-based CDG framework, and the
problem description. The mathematical problem formulation is
given in Section III. The proposed low complexity algorithms
are then presented in Section IV, followed by results and
analysis in Section V, and finally conclusion in Section VI.



II. SYSTEM MODEL

We model a wireless sensor network as a connected graph
G = (V,E), where V is a set of N sensor nodes deployed
randomly in a given region, and E is the set of links or edges
between any two sensor nodes with enough transmit power to
be within radio range with respect to each other. We assume
the density of nodes and the transmit power capability per
node are high enough to have a connected graph. We assume
each sensor node at each round has a data reading x; which
it intends to send to a sink node, e.g., cellular base station
or data collection central unit. Consequently, at each round,
the sink node needs to gather, in total, a data vector of size
N (e, X = [11,22,....,2x5]T) from all the sensor nodes in
the network. In order to avoid long range transmissions or
relaying data over multiple hops from each sensor node to the
sink, we utilize a UAV to navigate over the region in order
to collect data from the sensors and deliver to the sink. This
can directly enhance the energy efficiency in the network and
the connectivity to any remote sensor node due to the high
flexibility in controlling the UAV’s trajectory.

A sample graph is shown in Fig. 1(a), where sensor nodes
are represented by circles; the UAV’s source location (S) and
destination location (D) are represented by dark squares. Note
that the destination of the UAV represents the desired sink
node where the sensors’ readings are intended to be delivered
and processed. The source and the destination can be co-
located or reside in different locations depending on the use
case and the structure of the network.

However, flying the UAV over all the nodes in the network
to collect data is not efficient as it would lead to long travel
trajectory, high data collection delay and the need to frequently
recharge the UAV’s battery. To achieve a balanced trade-
off between shortening the UAV trajectory and reducing the
energy consumption of the sensor nodes, we divide the sensor
network into mutliple clusters where in each cluster one of the
sensor nodes is selected as a CH. The CH is responsible for
gathering data from all other nodes in the same cluster, and
consequently sending the aggregated data to the UAV to be
delivered to the sink node. The UAV has then to traverse all the
selected CHs where it should visit each CH once and arrive at
the destination with minimized total trajectory distance, similar
to the traveling salesman problem.

Without loss of generality, we assume the UAV flies at an
appropriate low altitude over each CH to collect data with fixed
transmit power and high bit rate over a line of sight channel.
Moreover, the UAV flies with a suitable velocity to have
enough contact time with each CH to collect its aggregated
data. Therefore, our problem aims at clustering the nodes and
choosing the most suitable CHs such that the total transmitted
power for data collection in the network and the trajectory
of the UAV over the CHs are jointly minimized. In order
to further optimize performance, we integrate a projection-
based compressive data gathering approach as explained in the
subsections below. Fig. 1(b) shows an example scenario with
four clusters and an optimized UAV trajectory passing over
the four selected CHs on the trajectory from the UAV source
location to the destination sink node (represented by a black
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Fig. 2. Example forwarding tree construction using projection-based CDG.

thick line traversing the CHs). In addition, the figure shows
sample forwarding tree construction per cluster (represented
by a set of arrows).

A. Compressive Data Gathering (CDG)

CDG promises to efficiently recover IV sensors’ readings at
the sink with far fewer sample measurements, as long as the
original readings could be transformed or compressed in some
sparse orthonormal transform domain. Suppose the original
data X = [z1,%9,.....,2n]T has a k-sparse representation
under a proper matrix W, where U is a Fourier transform
matrix of size N x N. Thatis X = \IIS, where S is a k-sparse
column vector representation of X and only k coefficients of S
are non-zero and k£ < N. According to the Restricted Isometry
Property (RIP) of the Compressed Sensing (CS) theory [5], the
sink may receive M = O(klog N) measurements instead of
N readings, where M < N; that is Z = PUS = $ X, where
Z is a column vector of sample measurements of size M x 1
and @ is a sample measurement matrix of size M x N. In other
words, the sink can perfectly recover the original data X by
receiving Z = [z1, 22, ...., 2za1) 1, where 2, = ZnN:1 Brm.nTn,
m = 1,2,...M and ¢, is a coefficient in matrix ¢ at
row m and column n. Each z,, represents a weighted sum
of measurements from nodes in the network with non-zero
coefficients in a row of the matrix ®. We refer to these nodes
as interest nodes and the data aggregated from them as one
projection. The matrix ¢ has M rows, one row for each codded
sum (projection), and N columns, one column for each sensor
node. Now, from M measurements (Z), using the random
sample matrix ® and the Fourier transform matrix W, the
sink recovers the sparse representation of the data S (not the
original data) by solving the convex optimization problem:

min || S|, subject to Z=3US8 = AS (1)
5

After recovering the sparse vector S, the original data (X) is




obtained by letting X = ¥S. In this paper, similar to [8]-[10],
the number of non-zero coefficients in each row of the matrix
d is chosen as [A—Aﬂ (almost equal size) such that none of the
columns in ¢ has all-zero entries. For more details on CS, the
reader is referred to [5,7].

B. Problem Description

Given a connected graph G, sample matrix ®, the problem
of UAV-aided projection-based CDG consists of finding M
forwarding trees, where each tree should collect the coded
sum from a set of nodes belonging to one cluster (i.e., nodes
with non-zero coefficient in a corresponding row of matrix ®)
en-route to the selected CH with optimized energy efficiency.
Each tree m (1 < m < M) corresponds to one cluster (or
projection in CDG) which gathers one coded sum z,, from a
set of nodes in a cluster (or interest nodes) at a CH; the set
of M clusters is denoted as W. Our objective is to construct
the forwarding trees such that the total power transmitted in
the network is minimized. The gathering on each forwarding
tree is performed as follows: each interest node (n, n € I,
where I,,, is the set of interest nodes of tree m or set of nodes
in cluster m) upon collecting its measurement, multiplies its
reading x,, with its random coefficient ¢, ,, and combines
the data ¢,, ,x, with those received from its descendants
(if any) and sends the obtained coded sum in one packet to
the parent node. Finally, the CH which is the root of the
tree receives one coded sum z,, = Znelm Om,nTy. Fig. 2
illustrates an example of the projection-based CDG process
for one forwarding tree (e.g., z1) in a given cluster.

The interest nodes set I,,, can be represented as a matrix
with I,, , € {0,1}, i.e., I, , = 1 when node n is in cluster
m. It should be noted that the number of clusters (M) is
determined in advance and depends on the number of nodes in
the network and the sparsity representation of the sensor data,
i.e., M = O(klog N), where k is the sparsity representation
of the data in the Fourier transform domain. Consequently,
the size of each cluster is almost equal to [4%]. It should
be also noted that without compressive data gathering, nodes
closer to the CH will perform more forwarding than nodes
which are farther away. Thus, with CDG, the transmission
load is distributed across multiple sensor nodes in the network
which leads to more balanced energy consumption yielding an
extended network lifetime.

III. PROBLEM FORMULATION

In this section, we formulate the UAV-aided CDG problem
as a mixed linear integer program (MILP), with an objective
to divide the sensor nodes into almost equal-sized clusters
with one selected CH per cluster. The aim is to generate
forwarding trees for data gathering at CHs with minimum total
transmission power, while at the same time minimizing the
UAV trajectory to traverse all CHs from source location to
destination sink node. Let Pi?’h be the transmission power
required to transmit data from nodes ¢ to j (or over link
(i,4)) in cluster m if h is the CH. And let U;; € {0,1}
indicate whether the UAV will traverse from node 7 to j, where
i&j € {VIUSU D}, V is the set of sensor nodes, S is the
source node and D is the destination node.

Objective: The objective is to jointly minimize the total
transmission power required for data gathering in the network
and the total length of the UAV trajectory.

Minimize w Z sz,h +(1—-w) Z d;;jUij
meWw &je{VUSUD}
heVv
(i,7)€E
2

Subject to: constraints (3) - (18), which are described below.

The first term in the objective function corresponds to the
total power transmission of active links in the constructed for-
warding trees, and the second term depicts the total trajectory
distance of the UAV. The parameter w (0 < w < 1) indicates
the weight of each term in the objective function. Depending
on the use case, the weight can be adapted to balance the level
of importance between the sensor nodes’ energy efficiency and
the UAV’s trajectory.

Clustering constraints: For the projection-based CDG, the
only constraints required for the clustering are to enforce the
size of the clusters to be equal to [4-] such that no node
belongs to more than one cluster. This is normally feasible
since we assume a dense sensor network scenario with enough
transmit power capability per sensor node to have a connected
network graph. Let I,,,,, € {0,1} indicate whether node n
belongs to cluster m or not. Hence, constraint (3) enforces
the size of the clusters and constraint (4) asserts that each

node should belong to only one cluster.

N
Z I < ]'M], Ym e W. 3)
neV
Z Im,n = 1, Vn e V. (4)
meWw

Flow conservation constraints: These constraints are re-
quired in order to construct a routing-path from the transmitter
to the receiver of each data packet. In graph theory [11], for a
network routing-path, the flow conservation asserts that the
amount of incoming flow to a node equals to the amount
of outgoing flow, except for a transmitter (which has only
outgoing flow) and a receiver (which has only incoming flow).
In our problem, a flow is a data packet, which needs to be
directed from a node in each cluster to its corresponding CH.
Let F, }Zm > 0 be the data packet (flow) imposed by certain
routing on edge (, j) (i.e., between nodes ¢ and j) to aggregate
data in cluster m if h is a CH. Constraints (5) and (6) assert
that in each cluster, if & is a CH, there is no flow going out of
h and there has to be '}, — 1 number of flows coming into h,
respectively. C, is the size of cluster m, i.e., the number of
nodes in the cluster. On the other hand, constraint (7) ensures
that the total number of incoming minus outgoing flows for
all other nodes in the cluster has to be utmost one to cause
one flow being forwarded from each node in the cluster to the
CH. In addition, the constraints in (8) make sure that there is
no flow on any edge (4, j) which is not in cluster m.

Z F,Ztm =0,

j:(h.j)EE

Ym e W,hecV. )



> ER"=Lnn(Cn—1), YmeWheV. o
i:(i,h)EE

S OEST— > FNT < I
j:(n,j)EE i:(i,n)€E (7)

Vm e W,h e V,neV/h.

F-h"m < IniB, o
{ Tom < ImyZ'B Vm e W,h e V,(i,j) € E. (8)
Forwarding tree link creation constraints: These constraints
create forwarding links for a tree. Let X?;’h € {0,1} indicate
whether there is a forwarding link between nodes ¢ and j
in cluster m if h is a CH. XZ?’h = 1, if there is a positive
traffic flow from ¢ to j, and zero otherwise. This implies that
FPh =0= X" =0and F7" > 0= x" = 1, which is
achieved by the following inequalities (B is a large constant
greater than any possible value for Fi’f’h):

Xm,h m,h
{ g YmeW,heV,G,j)eE. (9
Xif =z é; »

Transmit power constraints: The following constraints
make sure that, for any forwarding link in a tree, enough
transmission power is consumed for successful data transmis-
sion modeled via a signal-to-noise-ratio (SNR) greater than
a threshold [; otherwise, the power level is set to zero. In

pmhg-e
other words, when X;;L’h =1= % > [ and when
X?}’h =0= Pg’h = 0, where d;; is the distance between 1%
and j, « is the path loss exponent, and 7 is the background
thermal noise. This can be represented as follows:

Pm,h m,h
A = X;% hB;a
l) s 5 Ui
ij > Xij PR

VYmeW,heV,(i,j) e E. (10)

Cluster head selection constraints: These constraints are
needed to choose the most suitable CHs for minimizing the
UAV trajectory. Let H;" indicate whether node h is chosen as
a CH for cluster m and let T}, indicate the UAV’s trajectory.
Constraint (11) asserts that a node cannot be chosen as a CH
if it is not in the cluster in the first place, i.e., H;* = 0 when
I, = 0. Constraint (12) makes sure that there is only one
CH for each cluster, and constraint (13) ensures that M/ CHs
should be chosen for the UAV’s trajectory.

HI* < L, VmeWheV. (1)

heVv

Ty, = Z H}T7 VheV. (13)
meWw

UAV trajectory constraints: These constraints make sure that
a UAV will start from the source, traverse all the CHs in the
network for data collection, and eventually return or arrive at
the destination. Let U;; indicate whether the UAV will traverse
from nodes ¢ to j. Constraints (14), (15) and (16), similar to
the flow conservation constraint, force the UAV to traverse
from the source over the network to the destination. More
specifically, constraints (14) and (15), respectively, enforce the

UAV to start from the source S and arrive at the destination
D. Constraint (16) ensures that the UAV will traverse through
some nodes in the network. In other words, if node n is on
the trajectory of the UAYV, in total one UAV will arrive at node
n and the same one will leave, which results in the difference
of incoming and outgoing on node n to be zero. Constraint
(17) makes sure that the UAV will traverse only the CHs, and
finally the sub-tour elimination constraint (18) ensures that
the UAV will not trap into cycles. Note that R; is a dummy
variable required for the sub-tour elimination.

Y Usi=1

(14)
JEV
eV
S Un— Y. Uy=0, VneV.
ie{vUsyDn} je{lvUsUD} (16)
il=n jl=n
T =>jeqvusypy Vi VieV
. a7
szzie{vusup} Uij, vVjieV
Ri—R;+U;M <M —1, VieV,jeV i#£j (18)

IV. PROPOSED LOW COMPLEXITY ALGORITHMS

The problem of UAV-aided projection based CDG to jointly
cluster the network, choose the appropriate CHs, find the UAV
trajectory over the chosen CHs, and construct a forwarding
tree to gather data in each cluster in the most energy efficient
manner is a complex problem of combinatorial nature. The
execution time of solving the joint optimization problem grows
exponentially as the size of the network grows, which limits
its scalability. For example, it takes 18 minutes to solve
for a 20-node network size and more than 39 hours for
30-node network. Hence, in this section we decompose the
joint problem into four complementary subproblems and after
analyzing the complexity of each subproblem, we present a
heuristic low-complexity algorithm to efficiently solve each
subproblem for large scale networks.

Clustering subproblem: The clustering subproblem can be
represented as an updated version of K-means clustering [12].
In K-means clustering, the aim is to partition N nodes into K
clusters where nodes belonging to one cluster have the nearest
mean using Euclidean distance; this results in partitioning
the network into Voronoi cells. On the other hand, in the
formulated clustering subproblem, a key difference is that the
sizes of the clusters should be uniform even if the solution
distorts the shapes of the Voronoi cells. In the proposed algo-
rithm, after applying K-means clustering method, we update
the clusters to end up with almost equal size cells. Note that
K-means clustering is proven to be NP-hard in [13]. Hence,
this implies that our clustering subproblem is also NP-hard; the
proof is omitted due to the similarity to K-means clustering.

Algorithm 1 initiates by the K-means clustering algorithm
(Phase I). The algorithm starts by placing random K = M
points (as center points for clusters) inside the region, and
assigns each node in the network to the nearest random points.
Iteratively, the K-means algorithm finds the center point for



nodes in each cluster by taking the mean of the vertical and
horizontal Euclidean axes, and reallocate nodes in the network
to the nearest center points until convergence; this step is
repeated until there are no differences in clustering. Next,
the algorithm in Phase II nearly equalizes the size of the
clusters. For each cluster m, which has less that % nodes,
it first tries to borrow a node (nearest one) from a neighbor
cluster that has a size greater than %, if any, and an edge
connecting the node to cluster m. Otherwise, a node can be
borrowed from a neighbor cluster which has no restriction on
borrowing, if any. Else, cluster m will borrow a nearest node
that shares an edge from a cluster with lower restriction level.
By borrowing from a restricted cluster, its restriction level
is increased by one. Consequently, when a cluster enlarges
its size, it restricts itself more from borrowing. The running
time of Phase I (K-Means algorithm) is O(NMT'), where
T is the number of iterations needed until convergence. It
should be noted that the number of iterations is often small,
and therefore K-Means algorithm is often considered to be
of linear complexity in practice, although it is in the worst
case superpolynomial when performed until convergence [14].
Phase II takes O(MY Jlog(J)), where Y is the maximum
number of nodes that a cluster might have shortage to %
nodes, after clustering with K-means algorithm, and J is the
maximum number of nodes in Qgurteq (queue which holds
neighbor nodes that share edges with cluster m). Note that the
complexity of sorting Qsorteq in place is O(log(J)). Hence,
in total, the time complexity of the clustering subproblem is
O(NMT + MY Jlog(J)), where the algorithm takes more
time to run Phase I (K-means) than Phase II (updates).
Therefore, the running time of the algorithm is O(NMT).

Cluster heads selection subproblem: To elect M CHs
in a network of size N nodes, there are (ﬁ) distinctive
combinations. In a large scale network, obtaining the optimal
CHs through is complex due to the huge search space, and
is known to be an NP-hard problem [15]. The proposed
algorithm for choosing CHs is summarized in Algorithm 2.
The algorithm uses two methods based on the position of the
source S and destination D. In the first method, when S and
D are positioned at two sides of the network which requires
the UAV to travel from one side to the other, a straight line is
drawn from S to D. Next, the Euclidean distance from each
node to the drawn line is computed. Finally, for each cluster,
the node with the smallest computed distance to the line is
chosen as the CH of that cluster. In the second method, when
both .S and D are positioned on one side (or S = D), the node
in each cluster that has the shortest Euclidean distance to .S
or D is chosen as the CH. In the first method, the algorithm
to compute the distances for all nodes in the network to the
drawn line and also to find the closest node in each cluster to
the line has complexity O(N). As for the second method, the
running time of the algorithm is also O(V). Hence, the time
complexity of Algorithm 2 is O(N).

UAV trajectory subproblem: The UAV trajectory sub-
problem can be solved similar to the Traveling Salesman
Problem (TSP), and it is proven to be NP-hard in [16].
Therefore, we use a heuristic algorithm implementation for
TSP (nearest-neighbor algorithm) to solve our UAV trajectory

Algorithm 1: Clustering subproblem

Data: Graph G(V, E'), Number of clusters M
Result: Clusters I,,, m =1,2,..., M.

1 Phase 1 (K-means):

Randomly initialize K = M cluster center points
M1y U2y oeey Bms

3 I, < 0.

4 repeat

5 I, < I},.

6 for each node n do

7 for each cluster m do

8 L L Ly < min||v, — pim||?.

N~

9 for each cluster m do
10 L lm = mean of I,,.

u until 7, = I/ ;
12 Phase II (updates to equalize cluster sizes):

13 repeat

14 for each cluster m do

15 while size(m) < 4% do

16 for each node i that shares an edge with
cluster m do

17 | Qsortea + Add(i).

18 if Foundyoge = node in Qsorieq that its
cluster has size > % then

19 I, + Add(Foundyode)-

20 Restrictedge; + Add(m).

21 else if Foundnoge = node in Qsorieq that its
cluster ¢ Restrictedge; then

22 I, + Add(Foundyode)-

23 Restrictedger < Add(m).

24 else

25 Foundyoge = node in Q sorteq that its

cluster has lower restriction level.
26 Increase restriction level for the borrowed
cluster.
27 I, + Add(Foundpode)-
28 Restrictedge; <+ Add(m).

29 until all clusters have % or % + 1 nodes;

subproblem. Algorithm 3 summarizes the steps of finding
the UAV trajectory (U;;). The algorithm starts by finding the
nearest CH to the source (5), and assigns it to its first traversal
node. Next, the algorithm keeps finding and assigning the
nearest unvisited CH to the UAV’s trajectory, until there is
no CH left to be added. Finally, the destination (D) is added
as the last node. The running time of the algorithm, similar to
the nearest-neighbor algorithm of the TSP, is O(M?).

Forwarding tree construction subproblem: We may use
one of the Minimum Spanning Tree (MST) methods (e.g.,
Kruskal algorithm [11]) to efficiently solve the forwarding
tree construction subproblem for each cluster. The complexity
of the algorithm is O(\,, log(Cy,)), where )\, and C,, are,
respectively, the total number of edges and nodes in cluster
m. This algorithm can solve for all M clusters in parallel.



Algorithm 2: Choosing cluster heads subproblem

Data: Graph G(V, E), clusters I,,,, distances d;;.
Result: Cluster heads H,,, m = 1,2,..., M.

1 if S and D are resided on two ends then
2 Line(s,py < Draw a straight line from S to D.
3 for each node n do

4 L Find anLine(s,D)'

5 for each cluster m do

6 for each node i € I,, do

7 L H, = smallest(dy, Line s p,)-
8 else

9 for each cluster m do

10 for each node i € I,, do

1 L H,, = smallest(dy,s , dy,p).

Algorithm 3: UAV trajectory subproblem
Data: Cluster head set H.
Result: UAV trajectory U;j, (i,7) € L.
1 C < Find nearest cluster head to S.
2 USC + link (S, C)
3 Remove C from set H.
4 while H is not empty do
5 C’ < Find nearest cluster head to C.
6 Uccor < link (C, O/)
7 c=cC.
8 Remove C from set H.

9 Ucp < link (C, D)

V. PERFORMANCE EVALUATION

In this section, we first study the performance of the
proposed algorithmic method versus the joint problem for
relatively small network scenarios by varying the number of
sensor nodes and clusters. We also study the performance by
positioning the UAV source and destination once by residing
both at one side of the network (i.e., S = D), and then by
positioning them on opposite sides (i.e., S # D). We use
the total power transmissions and UAV trajectory distance, as
well as execution time as the key metrics for the comparisons.
We then study the performance of the proposed algorithms
(denoted as UAV-CDG) on a relatively large network scenario
with comparison to benchmark methods that either gather data
without using compressive sensing (denoted as Non-CDG),
or without UAV assistance (denoted as Non-UAV). For the
numerical results, we generate arbitrary networks with N
nodes where the nodes are randomly distributed over a region
of 900 x 700m?, such that the resulting graph is connected.
The density (average nodal degree) of the network is tuned
by increasing or decreasing the communication range of each
node. Source (S) and destination (D) are placed 50 meters
away from the network. We use network sizes of 20, 25 and
30 nodes with communication ranges of 200, 190, and 180
meters, respectively, for the small network scenarios. For large
networks we use the following combinations of number of
nodes and radio ranges: 100 nodes (with communication range

of 120m), 250 nodes (100m), 500 nodes (80m), 750 nodes
(60m) and 1000 nodes (40m). We assume the SNR threshold
for successful transmission is set to S = 2, corresponding
to a given target bit rate level. We further assume w = 0.5,
giving equal weights to both terms in the objective function.
We use CPLEX to solve the formulated optimization problem,
and JAVA based simulator to simulate the operation of the
low complexity algorithms. We generate results on CPU with
Intel(R) Core(TM) i7-4790 CPU @ 3.6 GHz speed, 16 GB
memory ram and 64-bit windows operating system.

We start by examining the results obtained by solving
the joint optimization model and compare it with the results
obtained from the heuristic algorithms using small networks.
Fig. 3 and Fig. 4, respectively, show the total transmission
power and UAV trajectory distance required to gather data in
the network for both S! = D and S = D. Note that the total
transmission power for the both positioning is equal. For the
compressive data gathering, we use the number of projections
(clusters) to be M = 0.2N. As depicted in the figures, the
proposed algorithms achieve notably good performance in
terms of the total needed transmission power and the UAV
trajectory distance when S! = D (gap less than 4% and
3% respectively), yet with worse performance (gap less than
24%) when S = D, this is due to the efficiency of the
implemented TSP heuristic algorithm, where UAYV, in case of
S = D, traverses CHs from the closer to the farthest one
and then returns to the sink node, which results in longer
distance. However, in terms of computational complexity, the
algorithmic method returns solutions in less than a second,
whereas, the joint optimization method takes 18 minutes to
generate solution for a 20-node network, two hours and 56
minutes for a 25-node network, and 38 hours plus 39 minutes
for a 30-node network. These results confirm that the joint
optimization problem is indeed very complex and that the low
complexity algorithms are much simpler with close to optimal
performance. One more observation that we can notice from
the figures is that as the number of nodes in the network
increases, the total energy consumption as well as the UAV
trajectory distance increase.

In Fig. 5, we study the performance by varying the number
of clusters (M = 5 to M = 25) on a network of size 20-node.
As plotted in the figure, the algorithmic method in terms of
the UAV trajectory distance when S! = D performs very close
to the joint optimization method with a maximum gap of 2%
only. Furthermore, its performance when S = D is not worst
than 24%, which is still acceptable for such an algorithm with
a very low time complexity. To be noted that the total power
transmissions for both positioning of S and D is equal and
similar to the joint method. From the figure, we may also
observe that the UAV trajectory distance grow by the number
of clusters. The reason goes for the increasing number of
cluster heads where a UAV is required to traverse them. In
addition, the figure shows that the UAV has to traverse longer
distance in case when S = D for all different number of
clusters except for networks with very few number of clusters
(eg., M = 2 shown in the figure). This is because CHs can be
chosen very close to the source (which is also the destination),
and avoid traversing the entire network’s region to reach the
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destination on the other end.

Finally, we consider a large network scenario and we
compare the performance of our proposed algorithm (UAV-
CDG) in term of total transmission power with methods that
either do not use compressive sensing for data gathering (Non-
CDG) or do not utilize UAV assistance for data collection
(Non-UAV). The results for M = 0.1 N with average over ten
runs are shown in Fig. 6. The plots in the figure show that
gathering data from a network in a basic way without relying
on any techniques of compressive sensing and UAV assistance
(Non-UAV) require significantly more energy consumption in
order to transmit and relay data through multiple hops to
the destination sink node. Consequently, it is obvious that
the performance of the Non-UAV method is worse than the
other methods. With UAV assistance and gathering data at
cluster heads instead of the sink which decreases the number
of relaying transmissions, the needed energy consumption
is reduced notably. As it can be seen from the figure, the
Non-CDG method saves 71% to 85% in terms of energy
compared to the Non-UAV method. Furthermore, our UAV-
CDG method, owing to compressive data gathering, performs
55% to 65% better than Non-CDG method and respectively
89% to 94% better than the Non-UAV method. This shows that
our proposed method substantially outperforms other methods
in terms of energy consumption, which leads to enhanced
wireless sensor network lifetime.

VI. CONCLUSION

In this paper, we proposed a novel data collection technique
in WSNs using projection-based Compressive Data Gather-
ing (CDG) and UAVs. CDG is utilized to reduce the number of
transmissions and corresponding energy consumption through
aggregating data en-route from sets of sensor nodes to a set

of projection heads. The UAV is used to further enhance
the energy efficiency of the sensors by avoiding long range
and multiple hop transmissions to reach the destination sink
node. As part of the solution approach, we divided the sensor
nodes into clusters and constructed a forwarding tree for each
cluster based on the CDG technique to minimize an objective
that is a function of both the total transmission power in the
network and the total UAV flight distance. We mathematically
formulated the joint optimization problem including clustering,
cluster head selection, forwarding trees construction, and UAV
trajectory planning. Owing to the complexity of the joint
problem, we decomposed the problem into multiple disjoint
subproblems and proposed a heuristic algorithm for each
separately with notably less complexity in order to scale up
the solution to dense sensor network scenarios. Finally, we
presented extensive performance results to demonstrate the
efficiency and superiority of the proposed algorithmic method.
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