

 Lebanese American University Repository (LAUR)

Post‐print version/Author Accepted Manuscript

Publication metadata

Title: Dynamic Task Offloading and Scheduling for Low‐Latency IoT Services in Multi‐Access

Edge Computing

Author(s): Hyame Assem Alameddine, Sanaa Sharafeddine, Samir Sebbah, Sara Ayoubi, and

Chadi Assi

 Journal: IEEE Journal on Selected Areas in Communications

DOI/Link: https://doi.org/10.1109/JSAC.2019.2894306

How to cite this post‐print from LAUR:

Alameddine, H. A., Sharafeddine, S., Sebbah, S., Ayoubi, S., & Assi, C. (2019). Dynamic task

offloading and scheduling for low‐latency IoT services in multi‐access edge computing. IEEE

Journal on Selected Areas in Communications, DOI, 10.1109/JSAC.2019.2894306,

http://hdl.handle.net/10725/10568.

 Year 2019

This Open Access post‐print is licensed under a Creative Commons Attribution‐Non Commercial‐No Derivatives

(CC‐BY‐NC‐ND 4.0)

This paper is posted at LAU Repository

For more information, please contact: archives@lau.edu.lb

1

Dynamic Task Offloading and Scheduling for
Low-Latency IoT Services in Multi-Access Edge

Computing
Hyame Assem Alameddine1, Sanaa Sharafeddine2, Samir Sebbah1, Sara Ayoubi3 and Chadi Assi1

1Concordia University
2Lebanese American University

3INRIA

Abstract—Multi-access Edge Computing (MEC) has recently
emerged as a novel paradigm to facilitate access to advanced
computing capabilities at the edge of the network, in close
proximity to end devices, thereby enabling a rich variety of
latency sensitive services demanded by various emerging industry
verticals. Internet of Things (IoT) devices, being highly ubiqui-
tous and connected, can offload their computational tasks to be
processed by applications hosted on MEC servers due to their
limited battery, computing, and storage capacities. Such IoT
applications providing services to offloaded tasks of IoT devices
are hosted on edge servers with limited computing capabilities.
Given the heterogeneity in the requirements of the offloaded tasks
(different computing requirements, latency, etc.), and limited
MEC capabilities, we jointly decide on the task offloading (tasks
to application assignment) and scheduling (order of executing
them) which yields a challenging problem of combinatorial
nature. Further, we jointly decide on the computing resource
allocation for the hosted applications, and we refer to this
problem as the Dynamic Task Offloading and Scheduling (DTOS)
problem, encompassing the three subproblems mentioned before.
We mathematically formulate this problem and owing to its
complexity, we design a novel thoughtful decomposition based
on the technique of Logic Based Benders Decomposition. This
technique solves a relaxed Master, with fewer constraints, and a
subproblem, whose resolution allows the generation of cuts which
will, iteratively, guide the master to tighten its search space.
Ultimately, both the master and the sub-problem will converge
to yield the optimal solution. We show that this technique offers
several order of magnitude (more than 140 times) improvement in
the run time for the studied instances. One other advantage of this
method is its capability of providing solutions with performance
guarantees. Finally, we use this method to highlight insightful
performance trends for different vertical industries as a function
of multiple system parameters with focus on delay sensitive use
cases.

Index Terms—Multi-access edge computing, Internet of Things,
5G, task offloading, resource allocation, scheduling.

I. INTRODUCTION

The expectations towards a premium Quality of Experience
(QoE) are widely increasing with the recent advancement
of 5G networks, paving the way towards a broad new set
of services such as augmented/virtual reality, traffic safety,
image and face recognition, etc. [1], [2]. Enabling proximity
services with fast service delivery at anytime in crowded areas,
comes hand-in-hand with the goal of 5G systems in providing

This work is supported by NSERC and Concordia University - Canada.

user-centric QoE that includes but is not limited to ultra-low
latency (i.e., ≤ 5ms), ultra-high reliability (i.e., 99.999%) and
a support of 1000 times higher data volumes [1], [3]. The need
for the support of higher data volumes comes as a result of
the tremendous foreseen increase in the number of wearable
Internet of Things (IoT) devices expected to reach 50 billion
in 2020 as reported by Cisco [4] along with a subscription
uptake forecast for 5G to reach 1 billion by 2023 as predicted
by Ericsson [5].

The constrained computation and storage resources of mo-
bile User Equipments (UEs) and IoT devices, in addition to
their limited battery life make them not suitable for sup-
porting the processing of resources-hungry mobile and IoT
applications providing 5G services such as online gaming
and face/speech recognition applications [2], [6], [7]. One
possible solution to overcome these limitations is the use of
Mobile Cloud Computing (MCC) which allows the UEs to
offload their computation-intensive tasks to be processed on
applications deployed on a powerful, centralized remote cloud
accessible via the Internet or a core network of a mobile
operator, thus, expanding the capability of mobile devices
[2], [8]. However, such approach incurs high communication
delays due to the distant location of the remote cloud from the
user which violates the QoE requirements for some real-time
delay-sensitive applications. Hence, in order to provide fast
service delivery compliant with a real-time context, Mobile
Edge Computing (MEC) has been introduced to bring cloud
computing resources at the edge of the network, closer to
the end-user [1], [9]. MEC was first introduced to accelerate
the advancements on edge computing in mobile networks
and within the Radio Access Network (RAN). However,
the definition of MEC was then slightly modified to “Edge
Computing refers to a broad set of techniques designed to
move computing and storage out of the remote cloud (public or
private) and closer to the source of data” [10] to accommodate
various set of access technologies (e.g., WiFi, Long-Term
Evolution(LTE), etc.) [11]. As such, the European Telecom-
munications Standards Institute (ETSI) dropped the “Mobile”
from MEC and renamed it Multi-access Edge Computing
(MEC) [1], [11]. It is worth noting that other edge computing
paradigms such as cloudlet and Fog computing exist and differ
by the access technology they use and the applications they

2

target [12].
MEC consists of edge servers deployed at the edge of

the network and implemented either at the cellular Base
Stations (BSs) or at the local wireless Access Points (APs)
[6]. As the MEC computation resources are more limited than
those available in MCC, MEC servers can at anytime offload
their demanding tasks to MCC servers through the Internet
whenever they are overloaded. Further, multiple MEC servers
can collaborate and offload their tasks to each others (e.g.,
via a backhaul network) to provide better services for the
mobile users through balancing their workloads and sharing
their resources [8]. For instance, a nearby edge server can
choose to offload the task of a connected UE to another
edge server, if it does not host the required application to
process the task, or if its application is overloaded or can
not be allocated enough computing resources to process the
task within its delay requirement. Hence, efficiently utilizing
MEC resources is necessary to guarantee its foreseen benefits
which are intimately associated with solving the following
challenges: 1) The task offloading problem which consists
of determining to which edge server each task should be
offloaded. More precisely, it consists of associating each task
to an application hosted on an edge server and able to process
it; 2) The application resource allocation problem which
determines the computing resources to be allocated to each
application1 deployed on an edge server in order to process
all its assigned tasks within their delay requirements; 3) The
task scheduling problem which decides on the order in which
each task should be processed on the shared application while
meeting its deadline.

While some work in the literature focused on determining
the edge server to which each task should be offloaded and the
computing resources it needs to be allocated [6], [13], [14],
[15], [16], others addressed the joint problem of task offload-
ing and scheduling either through stochastic optimization [9],
[17] or using algorithmic solutions [8], [18], [19]. The methods
explored in existing works are approximate solutions which
do not explore the benefits that can be brought by enabling
dynamic modifications of the computing resources allocated to
the shared IoT applications and their impact on the scheduling
of offloaded tasks.

In this work, we follow a more holistic approach for task
offloading with joint resource allocation and scheduling with
special focus on delay-sensitive IoT services [20]. This is
motivated by recent 5G standardization activities on ultra-low
latency uses cases, in addition to the emerging trend of zero
touch networks empowered by virtualization technologies that
enable dynamic scaling of resources. Hence, our contributions
can be summarized as follows:

• We mathematically define and formulate the Dynamic
Task Offloading and Scheduling problem (DTOS) as a
Mixed Integer Program (MIP) (DTOS-MIP).

• Given its complexity, we explore the DTOS-LBBD, a
Logic Based Benders Decomposition (LBBD) approach

1An IoT application can be hosted on a Virtual Machine(VM) or a
container/docker hosted at the MEC. The amount of resources of the VM/-
docker/container is to be determined.

to efficiently solve the DTOS problem to optimality.
The DTOS-LBBD decomposes the DTOS problem into
a master problem that performs the task offloading and
the resource allocation; and multiple sub-problems, each
addresses the scheduling of tasks offloaded to a single
IoT application.

• Extensive numerical evaluations are carried out to ex-
amine the efficiency of the DTOS-LBBD compared to
the DTOS-MIP in terms of runtime. In addition, valuable
performance trends are explored to highlight the impact
of task offloading and scheduling in meeting the diverse
QoE requirements aligned with 5G vertical industries.

The remainder of the paper is organized as follows. Section
II presents the literature review. Section III discusses the
system model and motivates the problem. Section IV defines
and mathematically formulates the DTOS problem. Section V
presents and explains the various aspects of the DTOS-LBBD
approach. Our numerical evaluation is depicted in Section VI.
We conclude in Section VII.

II. LITERATURE REVIEW

A. Joint Task Offloading and Resource Allocation

Sun et al. [14] solved the latency-aware workload offloading
(LEAD) problem where they mathematically formulated the
task offloading problem under the objective of minimizing
the average response time for mobile users and presented
an algorithmic approach to solve it efficiently. The limited
resource pool in MEC in comparison to a centralized cloud
computing motivated many work in the literature to jointly
address the resource allocation and task offloading problem in
the quest to efficiently utilize these resources [11].

The authors of [6] mathematically formulated the joint
problem of task offloading and resource allocation in MEC
where they do not only account for the computing resource
allocation but also for the transmission power allocation of
mobile users. Given the NP-hardness of the problem, they
decompose it into a task offloading problem which they solve
using a heuristic approach and a resource allocation problem
which they solve using convex and quasi convex optimization
techniques. Unlike [6], the work of [13] focused on minimiz-
ing the cost of the online resource allocation in MEC under
unpredictable resources prices and user mobility. The authors
of [13] provide an online optimization-based algorithm to
solve the resource allocation problem of mobile users at each
time slot by considering adapting their allocated resources
based on the optimal solution obtained at the previous one.

The work in [16], [15] accounted for mobile users request-
ing a determined type of IoT applications. With the objective
of minimizing the average response time in terms of network
and computing delays, the authors of [16] formulated and
addressed the problem of placing IoT applications of different
types on existing MEC while deciding on their computing
resources and determining the tasks that will be offloaded
to each of them. In their work, they specified a maximum
allowable computing delay for each application. In contrast,
Jia et al. [15] considered a Network Function Virtualization
(NFV) based MEC, where they solved the task offloading

3

problem for a set of mobile users requesting a specific type of
Virtual Network Function (VNF) (a software implementation
of a network function) within specific latency requirements.
The work in [7] aimed at evaluating the impact of edge
computing and its enabling technologies on the response time.
Thus, the authors of [7] consider the special use case of
a mobile gaming 3-D application and evaluate the response
delay incurred by offloading the tasks to be processed on edge
servers deployed at three different locations (local deployment,
special-purpose cloud infrastructure and commercial public
cloud). Their experimental evaluation shows that the location
of edge servers and the virtualization technology used (i.e.,
container, Virtual Machine (VM), bar metal) highly impacts
the latency experienced. Other works on the task offloading
and resource allocation problem have been reviewed in [12],
[21].
B. Task Scheduling

An efficient resource utilization entails a smart orchestration
of resources sharing which can not be accomplished without a
proficient scheduling of their utilization. Hence, to maximize
the revenue of the infrastructure owner, Katsalis et al. [17]
devised a Lyapunov optimization framework to address the
VMs placement and scheduling problem while accounting for
the Service Level Agreement (SLA) for time-critical services.
Their scheduling approach considers the scheduling of the
number and the type (small, medium, large) of VMs to deploy
at each time slot for each mobile service operator based on
the variability of its workload. Similarly, the authors of [9]
employed a Lyapunov function to decide on the offloading
schedules of task while stochastically maximizing the network
utility under partial out-of-date network states information
without any consideration for the tasks delay requirements.
The authors of [18] jointly optimized the task offloading and
scheduling problems along with the transmit power allocation
problem. They were interested in minimizing the weighted
sum of execution delay and service energy consumption. They
decomposed the problem into a task offloading and scheduling
problem which they solve using the Johnson’s algorithm with
the objective of minimizing the makespan of all the jobs and
a transmit power allocation problem which they address using
convex optimization. The work in [18] considers that all the
jobs are sharing a single-CPU core at the edge server while
overlooking the deadline requirements of the tasks.

The task assignment and scheduling problem was investi-
gated by Wang et al. [19] as well, who presented an algo-
rithmic solution to solve the problem while accounting for
the deadline requirement of the tasks and for the scheduling
of their transmission and computation. The authors of [8]
solved the task offloading problem while accounting for the
possibility of dispatching jobs to a remote cloud as well as to
an MEC. In addition, they presented a preemptive scheduling
for the offloaded tasks with the objective of minimizing their
weighted response time using an online algorithm.
C. Novelty of our Work in Comparison to the Literature

While only few works in the literature accounted for the
deadline of the offloaded tasks and their demands on being
processed by specific type of IoT applications, we target in

this work, the QoE requirements of the rising 5G services of
different business verticals by presenting a complete offloading
scheme that accounts for a joint resource provisioning of IoT
applications as well as a fine grained task scheduling to meet
the delay sensitive requirements of these 5G services. We show
that such computing resource provisioning directly affects the
scheduling decisions and impacts the number of tasks that can
be admitted to the network. Further, another major contribution
of this work is the solution methodology and the achieved
scalability. Although the DTOS problem is very complex, to
the best of our knowledge, we are the first to present a LBBD
framework for the this problem that is able to achieve several
order of magnitude of faster run times while providing the
optimal solution.

III. SYSTEM MODEL

The tremendous move towards smart cities is gaining
momentum with the development of 5G. Smart cities will
enable several services such as smart traffic management,
security, energy efficiency and smart health care which make
use of multiple IoT devices and applications. We consider a
smart city Wide Area Network (WAN) as depicted in Fig.(1),
composed of a set S of cellular base stations which can be
represented by either a macro cell (eNB) or a small cell
(SCeNB). For simplicity and without loss of generality, we
will represent by eNB any type of base station. In order
to enable flexible routing and communications among eNBs,
we consider that the core cellular network is enabled with
Software Defined Network (SDN) technology. SDN is a new
paradigm that simplifies network management by logically
centralizing the control logic in one centralized entity called
SDN controller. Instructed by network applications about the
desired network policy (e.g., a routing application decides on
the path of a flow); the SDN controller installs the appropriate
forwarding rules in all forwarding devices’ routing tables such
as those in openFlow switches [22]. Thus, we consider an
SDN-based cellular network enabled with SDN controllers and
openFlow switches [16]. The SDN controllers benefit from a
global view of the network and can be used to provide some
monitoring based information such as the latency experienced
by a flow between two eNBs [23]. A subset of eNBs in S are
mounted with MEC servers to provide computation offloading
services to the IoT users (i.e., User Equipments (UEs) such
as tablets and wearable devices) (Fig.(1)). The MEC-enabled
system that we consider operates in a time-slotted structure,
where we denote by δ ∈ ∆ a time slot.

Let M be a set of deployed MEC servers; each MEC
server m ∈ M consists of a pool of physical servers with
an aggregated computing capacity cm specified in terms of
cycles/second or MHz. The MEC servers are hosting a set A
of IoT applications of multiple types (e.g., face recognition,
video encoding, etc.) designated to process the offloaded tasks
of UEs. Each application a ∈ A is a software which can be
deployed on top of a VM or a container hosted on a MEC
server m ∈M . It is of specific type that we depict by ta ∈ T
where T is a set of IoT application types. Like any other
software, an application a ∈ A requires some minimum system
specifications to be able to operate efficiently. For simplicity

4

Fig. 1: System Model.

and without loss of generality, we represent the minimum
system requirements of an application a by the minimum
processing capacity pamin, it requires to operate. However, each
application can be provisioned with some computing resources
pa, that exceed its minimum requirement pamin, in order to
maximize the workload it can process within a time limit. The
processing capacity pa of an application is represented in terms
of cycles/second and is related to the virtual CPU (vCPU)
resources (number of cores) assigned to the VM/container
on top of which the application is running [24]. Further, we
assume that these applications can be shared by many UEs but
can process the task of one UE at a time.

A. UEs Computation Tasks

We consider a set U of UEs requesting to offload their
delay-sensitive tasks to be processed by an IoT application
a ∈ A of a suitable type deployed on an edge server m ∈M .
In this work, we account for a quasi-static scenario where the
set U of UEs remains unchanged during the offloading period2,
however, it may change across different periods. We consider
that each UE u ∈ U has one computation task at a time.
Thus, in the following we use task and UE interchangeably. We
represent each task by a tuple < tu, µu, θu > where tu ∈ T
depicts the type of the IoT application required to process
the task of UE u ∈ U . µu represents the workload (cycles)
required to accomplish the processing of the task of UE u
and can be obtained by profiling the task execution [25]. θu
denotes the latency requirements (i.e., deadline) in terms of
time slots of the task of UE u. Note that, if the latter was

2We leave the study of the dynamic scenario where mobile UEs arrive and
depart dynamically during an offloading period for future work.

not processed within its deadline, it will be rejected from the
network.

B. Experienced Delays

Processing the offloaded tasks with respect to their latency
requirements entails deciding on the MEC server to which
each of the tasks should be offloaded, determining the com-
putation resources to allocate to the IoT applications that
will process the tasks, in addition to specifying the order in
which the offloaded tasks should be processed by each of
the applications. Solving the three aforementioned challenges
highly impacts the admission of the tasks to the network as
they directly affect some of the delays they experience. In
the following, we summarize the delays that an offloaded task
experiences.

1) Upload delay duup: The task uploading delay corresponds
to the time required to transmit the task from the UE u to
the serving eNB. We assume that the serving eNB s ∈ S
of each UE u is the base station with the highest received
signal quality. For simplicity and without loss of generality,
we assume that duup is predefined and can be calculated based
on the Signal to Interference plus Noise Ratio (SINR) as
explained in [6].

2) Edge-to-edge delay duee: Once the task of UE u is
uploaded, it should be processed by an IoT application a ∈ A
of a suitable type, deployed on the MEC m ∈M to which the
task was offloaded. It is of the best interest of u to have its task
processed by the MEC attached to its serving eNB to avoid
any additional network delays. However, the serving eNB may
not be enabled with MEC capabilities (UE1 in Fig.(1)), or the
MEC server attached to it may not be able to process the
task of u within its deadline θu; that is, 1) the MEC server

5

m is not hosting an application instance a of the same type
of that required by u (ta! = tu) or 2) the hosted application
instance a of the same type requested by u does not have
enough processing capacity pa to meet the task’s deadline,
or 3) a is overloaded and hence, the task of UE u will have
to experience long waiting delay in its buffer before being
processed as other tasks were scheduled before it since a can
process the task of one UE at a time. Thus, in any of these
situations, the task of UE u can be offloaded to another MEC
server m′ that is able to process it with respect to its QoE
requirements. In this case, the serving eNB needs to transmit
the task to another eNB s ∈ S where m′ is hosted. Hence, we
denote by duee, the delay incurred for transmitting the task of a
UE u from its serving eNB to the eNB connected to the MEC
server where the task of u will be processed. As our SDN-
based cellular core network can be used to establish a routing
path between two eNBs [14], the edge-to-edge delay duee can
be measured by the SDN controllers enabled with monitoring
tools such as SLAM [23]. Thus, we define a matrix H with
elements hmu to represent the value of duee for each UE u ∈ U
to each MEC server m ∈M . Note that duee = hmu = 0, if the
MEC server m is attached to the serving eNB of u.

3) Waiting delay duwait: When the task of UE u reaches the
MEC server m hosting the IoT application a that can process
it, it may experience some waiting delays, that we denote by
duwait, in the buffer of a. Such delay depends on the scheduling
order and the size of tasks assigned to a.

4) Processing delay duproc: Once the task of u starts pro-
cessing on its assigned application a, it will experience some
processing delay, that we depict by duproc. d

u
proc is the time

taken by a to execute the task of UE u and is inversely
proportional to the computing resources allocated to a as
specified in Eq.(1) where µu and pa are as defined above.

duproc =
µu
pa

(1)

5) Download delay dudown: Once the execution of the task
of a UE u by IoT application a is finalized, the output should
be transmitted back to u. As the size of the output is usually
much smaller than the initial size of the task, we assume that
the download delay incurred by transferring the output to u is
negligible [6]. Thus, we consider that dudown = 0.

In the following, we address the joint problem of task
offloading, application resource allocation, and task scheduling
and refer to it as the Dynamic Task Offloading and Scheduling
(DTOS) problem.

IV. DYNAMIC TASK OFFLOADING AND SCHEDULING - A
MIXED INTEGER PROGRAM (DTOS-MIP)

We define and mathematically formulate the Dynamic Task
Offloading and Scheduling (DTOS) problem as a Mixed
Integer Program (MIP).

A. Problem Definition

Let G(N,E) be a physical network consisting of a set of
nodes N = R∪M ∪S where R is a set of physical equipment
(e.g., switches, routers, etc.) and M is a set of MEC servers
attached to a set S of eNB; E is a set of links connecting
them. Let A be the set of IoT applications of different types

deployed on the MEC servers m ∈ M , and let U be the
set of UEs requesting to offload and process their latency-
sensitive tasks on these applications. The DTOS problem can
be formally defined as follows:

Definition 1. Given a physical network G(N ;E), a set U of
UEs, each UE requesting to offload and process a generated
task on an IoT application of the same type deployed on one of
the MEC servers m ∈ M ; determine the optimal assignment
of the tasks generated by UEs to the set of applications a ∈
A, provision computing resources for each application a and
schedule the processing of tasks assigned to each of them in
order to maximize the number of admitted tasks with respect
to their latency requirements.

B. Problem Formulation

Table I delineates the parameters used in the formulation
of the DTOS-MIP problem presented below. We define the

Network Inputs
G(N,E) Physical network of N nodes where N = R∪M∪S

and E links connecting them.
S Set of eNBs.
M Set of MECs.
R Set of physical equipment.
A Set of IoT applications to be deployed on m ∈M .
T Set of IoT application types.
P Set of processing capacities which can be assigned

to an IoT application a ∈ A.
cm ∈ N+ Processing capacity of an MEC server m ∈M .
xam ∈ {0, 1} Specifies that an MEC server m ∈ M is hosting

the IoT application a ∈ A (1), or not (0).
ta ∈ N+ Type of IoT application a ∈ A (ta ∈ T).
pamin ∈ N+ Minimum processing capacity required by the IoT

application a ∈ A.
User Equipments Inputs

U Set of UEs.
tu ∈ N+ Type of Iot application requested to process the task

of UE u ∈ U (tu ∈ T).
θu ∈ N+ Deadline of the task offloaded by UE u ∈ U .
µu ∈ N+ Number of cycles required to process the task of

UE u ∈ U .
duup ∈ N+ Upload delay of the task of UE u ∈ U .
hmu ∈ N+ Edge-to-edge transmission delay of the task of a

UE u ∈ U to a MEC server m ∈M .
Other Inputs

∆ Set of time slots (time line).
H Big integer number.

TABLE I: Parameters of the DTOS-MIP.

variable yaδu to determine that the IoT application a ∈ A
started processing the task of UE u ∈ U at time slot δ ∈ ∆.

yaδu =


1 if task of UE u ∈ U started its processing on IoT
application a ∈ A at time slot δ ∈ ∆,

0 otherwise.
Our objective is to maximize the number of admitted tasks
(Eq.(2)). A task of a UE u ∈ U is admitted if it can be
processed by an IoT application a ∈ A within its specified
deadline θu.

Maximize
∑
u∈U

∑
a∈A

∑
δ∈∆

yaδu (2)

6

In order to meet our objective, several constraints that we
elucidate in the following, have to be respected. Towards
defining these constraints, we declare:
pa ∈ R+ as a decision variable that determines the processing
capacity allocated to an IoT application a ∈ A.
We introduce the variable na ∈ {0, 1} to depict that an IoT
application a ∈ A is used, that is, it is processing at least one
task (1), or not (0).

na =

{
1 if IoT application a ∈ A is used,
0 otherwise.

Further, we declare sauu′ ∈ {0, 1} as a decision variable to
indicate that task of UE u started processing on IoT application
a before the task of UE u′.

sauu′ =


1 if task of UE u started processing on application
a ∈ A before the task of UE u′,

0 otherwise.
In order to maximize the number of admitted tasks, we need
first to decide on the computing resources to allocate to the
deployed IoT applications. Hence, we define Eq.(3) and Eq.(4)
to specify that an IoT application a is used if at least one task
is scheduled to be processed on it, and to ensure that it is not
used otherwise.

na ≤
∑
u∈U

∑
δ∈∆

yaδu ∀a∈A (3)

Hna ≥
∑
u∈U

∑
δ∈∆

yaδu ∀a∈A (4)

Eq.(5) guarantees that a used IoT application a ∈ A is at least
allocated the minimum computing resources pamin it requires
to operate.

pa ≥ napamin ∀a ∈ A (5)
Eq.(6) guarantees that the maximum computing capacity that
can be assigned to an IoT application a ∈ A can not exceed
the capacity of the MEC server m ∈M hosting it.

pa ≤ na
∑
m∈M

xamcm ∀a ∈ A (6)

Note that Eq.(5) and Eq.(6) ensure that an application a ∈ A
will not be allocated any computing resources if it is not used.
Eq.(7) guarantees that the capacity of an MEC server m ∈M
is not violated. ∑

a∈A
xampa ≤ cm ∀m ∈M (7)

A valid task offloading suggests that the task of a UE u can
not be scheduled on more than one application a ∈ A (Eq.(8)).∑

a∈A

∑
δ∈∆

yaδu ≤ 1 ∀u ∈ U (8)

Further, the task of a UE u ∈ U , can not be scheduled by an
IoT application a ∈ A which is of different type ta ∈ T than
the requested one tu ∈ T (Eq.(9)).∑

u∈U

∑
a∈A:(ta!=tu)

∑
δ∈∆

yaδu ≤ 0 (9)

In addition, Eq.(10) guarantees that an IoT application a ∈ A
can at most process one task in a time slot.∑

u∈U
yaδu ≤ 1 ∀δ∈∆

∀a∈A (10)

As we assume a non-preemptive scheduling, we present
Eq.(11) and Eq.(12) to ensure that an IoT application a ∈ A

processes a UE task u ∈ U completely before starting a new
task. Thus, an IoT application a can not start processing the
task of UE u′ before finishing the processing of the task of a
UE u; that is only if u is scheduled before u′ on a (Eq.(11)).
Similarly, an IoT application a can not start processing the
task of a UE u before finishing the processing of the task of
u′; that is only if u′ is scheduled before u on a (Eq.(12)).∑
δ∈∆

yaδu′ δ ≥
∑
δ∈∆

yaδu δ+ duproc−H(1− sauu′)
∀a∈A:(tu=tu′=ta)
∀u,u′∈U :(u!=u′)

(11)∑
δ∈∆

yaδu δ ≥
∑
δ∈∆

yaδu′ δ+ du
′

proc−H(1− sau′u)
∀a∈A:(tu=tu′=ta)
∀u,u′∈U :(u!=u′)

(12)
duproc in Eq.(12) and Eq.(11) determines the processing delay
experienced by task of UE u on the IoT application processing
it. It is calculated as in Eq.(13).

duproc =
∑
a∈A

∑
δ∈∆

yaδu
µu
pa

∀u ∈ U (13)

Eq.(14) represents the precedence constraint of the schedule
of the tasks of UEs u and u′ on IoT application a ∈ A.

sauu′ + sau′u =
∑
δ∈∆

yaδu
∑
δ∈∆

yaδu′
∀a∈A:(tu=tu′=ta)
∀u,u′∈U :(u!=u′)

(14)

An IoT application a can not start processing the task of a UE
u, unless the task is uploaded and transmitted to the application
(Eq.(15)).∑

a∈A

∑
δ∈∆

yaδu d
u
up + duee ≤

∑
a∈A

∑
δ∈∆

yaδu δ ∀u ∈ U (15)

where duee captures the edge-to-edge delay (Section III) and is
determined as specified in Eq.(16).

duee =
∑
m∈M

∑
a∈A

∑
δ∈∆

yaδu x
a
mh

m
u ∀u ∈ U (16)

Finally, since we are addressing tasks with stringent deadlines,
we need to ensure that the total delay experienced by a task
of UE u ∈ U should not exceed its deadline as specified in
Eq.(17) where duproc is as defined in Eq.(13).∑

a∈A

∑
δ∈∆

yaδu δ + duproc ≤ θu ∀u ∈ U (17)

Eqs. (11), (12), and (17) are non linear due to the non linearity
of duproc (Eq.(13)). Such non linearity is related to the division
by the decision variable pa which is multiplied by another
decision variable yaδu . Hence, in order to linearize it, we reduce
the search space by allowing pa to take at most one specific
value of a predefined set P instead of all the values in R+.
This is determined by Eq.(18).∑

p∈P
zpa ≤ 1 ∀a ∈ A (18)

where zpa is a new decision variable defined as follows:

zpa =

{
1 if a is allocated the processing capacity p ∈ P ,
0 otherwise.

Thus, Eq.(13) can then be rewritten as in Eq.(19).
duproc =

∑
a∈A

∑
δ∈∆

yaδu
∑
p∈P

zpa
µu
p
∀u ∈ U (19)

Similarly, pa can be replaced by
∑
p∈P z

p
ap in constraints

(5), (6) and (7). Finally, Eqs.(11), (12), (14), (17) and (19)
are non linear and can be easily linearized, but we omit the
linearization details due to space limitation.

7

C. DTOS Complexity

DTOS is a MIP (DTOS-MIP) which is complex to solve.
It is NP-hard given that it is a combination of three NP-hard
problems which are the task offloading problem, the applica-
tion resource allocation problem and the the non-preemptive
task scheduling problem. In fact, the task offloading problem
can be been proven as NP-hard via a reduction from the
generalized assignment problem [26] while the application
resource allocation problem can be proven as NP-hard via a
reduction from the two-dimensional bin-packing problem [27]
where the MEC servers are the bins and the IoT applications
are the objects to pack. Similarly, the task scheduling problem
can be proven as NP-hard via a reduction from the job-shop
scheduling problem [28].

V. DTOS-LBBD: A LOGIC BASED BENDERS
DECOMPOSITION

Given the complexity of the DTOS problem, we devise in
the following a Logic-Based Benders Decomposition (LBBD)
technique to solve it (DTOS-LBBD).

A. LBBD in a Nutshell

LBBD [29], is a row generation technique which follows
the “no-good learning” strategy. It consists of decomposing the
problem into a Master Problem (MP) representing a relaxation
of the original model and one or more Sub-Problems (SPs).
The SP, also known as inference dual, is an optimization over
the secondary variables while fixing the primary variables to
values computed based on the solution of the MP. By assigning
the primary variables some trial values and solving the SP, the
LBBD learns about the quality of other trial solutions, which
are then used to reduce the number of solutions that need to be
enumerated in order to find the optimal one. More precisely,
the solution of the SP is used to derive Benders’ cuts which
are added to the MP in order to cut infeasible solutions from
its solution space. An infeasible solution or a non globally
feasible solution can be defined as follows:

Definition 2. An infeasible solution or a non globally feasible
solution is a solution provided by the MP that is not feasible
to the SP (i.e., a solution that is unlikely to satisfy the SP
constraints).

Benders’ cuts are derived from the inference dual which
can be defined as the problem of inferring the tightest possible
bound on the optimal value of the main problem [29]. LBBD
consists of iteratively solving the MP and the SPs, deriving
and adding Benders’ cuts from the SPs to the MP until the
MP and the SPs solutions converge.

B. DTOS Decomposition Strategy

The efficiency of LBBD relies on the decomposition ap-
proach and the strength of the defined Benders’ cuts. Unlike
the classical Benders approach where Benders’ cuts can be
easily defined based on Lagrangean multipliers obtained from
the solution of the SP dual, no standard scheme for generating
Benders’ cuts exists for LBBD [30]. As classical Benders is
inappropriate for the DTOS problem given that it requires that
the SP be a continuous linear or non linear program [30],

designing an efficient LBBD with strong Benders’ cuts for
the DTOS problem is challenging.

Hence, our DTOS-LBBD consists of dividing the DTOS
problem into a MP which solves the task assignment and the
application resource allocation problems, and multiple SPs to
resolve the task scheduling problem. Jointly solving the task
assignment and the application resource allocation problems
has a positive impact on the efficiency of our DTOS-LBBD:
1) It overlooks the granularity of scheduling the tasks with
respect to their latency requirements. Instead, it considers
assigning the tasks of UEs to IoT applications of suitable
types while allocating each of these applications the minimum
processing capacity required to meet the deadline of each of
the assigned tasks. This, indeed, provides an upper bound on
the number of tasks that can be scheduled as it represents
a relaxation of the original problem. 2) Since application
schedules are independent from each other, our DTOS-LBBD
design allows us to benefit from a distributed scheduling
scheme by devising a scheduling problem for each used IoT
application. Defining an SP per IoT application may not be
possible if the application resource provisioning is to be solved
as part of the LBBD SP due to the MEC servers capacity
constraint which controls the processing capacity allocated
to its hosted applications. Finally, a distributed scheduling
enables the parallel execution of the SPs, and hence, reduces
the overall computation time of the DTOS-LBBD.

As depicted in Fig.2, the DTOS-LBBD starts by solving
the MP. The MP solution yields an assignment of a subset of
tasks of UEs to the hosted IoT applications and a processing
capacity allocated to each of these applications. For each used
application a ∈ A, an SP is defined and fed by the set of
tasks of UEs assigned by the MP to a and by the processing
capacity pa allocated to a. Let ψMPa be the total number of
tasks of UEs assigned to a by the MP. Further, let ψSPa

denote
the maximum number of tasks of UEs that can be scheduled
within their delay requirements on a by the SP. For every
used application a ∈ A, if (ψMPa > ψSPa), a Benders’ cut is
derived and added to the MP to guide it towards determining
a better value for pa and hence performing task assignment
that are likely to be all scheduled by the SP. The MP problem
is solved again after adding the Benders’ cuts inferred from
all the SPs. This process is repeated until

∑
a∈A ψMPa

=∑
a∈A ψSPa when the optimal solution is reached.

C. The Master Problem (MP)

The MP specific parameters are detailed in Table II while
the remaining ones are as specified in Table I. We define the

Mater Problem Inputs
P au Set of processing capacities which each of them, if

assigned to application a ∈ A, enables the task of
UE u to meet its deadline (P au ⊂ P).

σau ∈ N+ Arrival time of task of UE u ∈ U to application
a ∈ A.

σamin ∈ N+ Minimum arrival time to application a ∈ A of all
tasks of UE u ∈ U that can be processed on it.

θamax ∈ N+ Maximum deadline of all the tasks of UEs u ∈ U
that can be processed on a ∈ A.

TABLE II: Parameters of the MP.

8

decision variable qau ∈ {0, 1} to determine that the task of UE
u ∈ U is mapped to IoT application a ∈ A.

qau =

{
1 if task of UE u ∈ U is mapped to IoT application a,
0 otherwise.

The objective of the MP is to maximize the number of
admitted tasks (Eq.(20)).

ψMP = Maximize
∑
u∈U

∑
a∈A

qau (20)

The MP is subject to several constraints; we start by defining
a decision variable na ∈ {0, 1} to specify that an application
a ∈ A is used, that is, if a task of at least one UE is assigned
to it.

na =

{
1 if IoT application a ∈ A is used,
0 otherwise.

We define pa∈R+ as a decision variable that specifies the
processing capacity allocated to an application a ∈ A.
MP basic constraints

The set of constraints includes Eq.(21) which depicts that
the task of UE u ∈ U can be processed by at most one IoT
application a ∈ A. ∑

a∈A
qau ≤ 1 ∀u ∈ U (21)

Further, Eq.(22) is formulated to prevent the tasks of UEs to
be processed on IoT applications of different type.∑

u∈U

∑
a∈A:ta!=tu

qau = 0 (22)

Eq.(23) and Eq.(24) specify that an IoT application a ∈ A is
used if at least one task is offloaded to be processed on it.

na ≤
∑
u∈U

qau ∀a ∈ A (23)

Hna ≥
∑
u∈U

qau ∀a ∈ A (24)

Eq.(25) guarantees that an IoT application a ∈ A, if used,
should at least, be allocated its minimum required processing
capacity pamin.

pa ≥ napamin ∀a ∈ A (25)
Eq.(26) guarantees that the maximum computing resources
that can be allocated to an IoT application a ∈ A can not
exceed those of the MEC server hosting it.

pa ≤ na
∑
m∈M

xamcm ∀a ∈ A (26)

Eq.(25) and Eq.(26), guarantee that no computing resources
can be assigned to an unused IoT application a ∈ A. We
define Eq.(27) to ensure that the capacity of each MEC server
m ∈M is respected.∑

a∈A
xampa ≤ cm ∀m ∈M (27)

Strengthening the MP formulation
While the above MP formulation provides an upper bound

on the optimal solution of the DTOS problem, our experiments
have shown that it is not sufficient to efficiently solve big test
instances. Therefore, we strengthen the MP formulation by
adding valid inequalities to further tighten the solution space.
Thus, we first add Eq.(28) to determine a lower bound on
the processing resources to be allocated to each application
a ∈ A based on its assigned tasks. The minimum processing

resources needed to process all the assigned tasks to an appli-
cation a can be determined based on Eq.(1) by considering the
maximum processing time available to them on a, and which
can be calculated by deducting the earliest arrival time σamin
to a (i.e., σamin = min σau ∀u ∈ U : (tu = ta) where σau
accounts for the upload and edge-to-edge delays of task of UE
u to a) from the maximum deadline θamax of all tasks of UEs
requiring the same type of a.

pa ≥
∑
u∈U :(tu=ta) µuq

a
u

θamax − σamin
∀a ∈ A (28)

Similarly, pa can be lower bounded by the computing re-
sources that, if allocated to a, allows the task of UE u to
meet its deadline on a. Thus, we determine such comput-
ing resources set P au by a pre-processing scheme through
first applying Eq.(29) to calculate the minimum processing
resources (puamin) required on a to meet the deadline of the
task of UE u. P au can then be determined by adding all
the processing capacities p ∈ P that exceeds puamin and
do not surpass the capacity of the MEC server hosting a
(P au = {p ∈ P : puamin ≤ p ≤

∑
m∈M xamcm}).

puamin =
µu

θu − σau
∀u∈U

∀a∈A:(tu=ta) (29)

Hence, we define βjua ∈ {0, 1} as a new decision variable to
determine the processing capacity j ∈ P au which is selected
to process the task of UE u ∈ U on application a ∈ A.

βjua =

{
1 if j ∈ P au is used for processing the task of UE u on a,
0 otherwise.

We add the inequality depicted in Eq.(30) as a constraint in
the MP to specify that pa should be greater than or equal to
the maximum processing resources chosen to process any of
the tasks of UEs u ∈ U assigned to it.

pa ≥
∑
j∈Pa

u

jβjua
∀u∈U
∀a∈A (30)

Eq.(31) is added to guarantee that one processing capacity is
chosen for the task of UE u ∈ U on application a ∈ A, if and
only if, it is mapped on a.∑

j∈Pa
u

βjua = qau
∀u∈U
∀a∈A (31)

As some tasks may experience high edge-to-edge delays if
they were assigned to an application a of the same type hosted
on a certain MEC m, the minimum processing capacity they
require to meet their deadline on a may be very high and
surpasses the capacity cm of MEC m that can be provisioned
to a (i.e, P au = ∅). Thus, the assignment of such tasks to
these applications will always lead to their rejection. Hence,
we determine Eq.(32) to prune such assignments.∑

u∈U :(Pa
u =∅)

∑
a∈A:tu=ta

qau = 0 (32)

Note that as in DTOS-MIP, we replace pa by
∑
p∈P z

p
ap in

Eqs. (25), (26), (27), (28) and (30) where zpa ∈ {0, 1} is a
decision variable as defined in Section IV. We add Eq.(18)
to guarantee that one processing capacity is allocated to an
application a ∈ A.

D. The Sub-Problem (SP)

Table III depicts the parameters of the SP model. The
remaining parameters are as specified in Table I. The SP for-

9

Solve the MP

Send Ua and pa

 to each SP

NO

Solve SP for a1

Solve SP for an

SPs scheduled all

assigned tasks?

✂MP =☎✁✟�✂SPa

...

✄✆✆ ✝✞✠✆✞✡☛☞

Cuts

YES

Fig. 2: DTOS-LBBD flowchart. Fig. 3: Benders’ cut insights.

mulation is presented in the following. We define αu ∈ {0, 1}

Sub-problem Inputs
a Used application a ∈ A for which the SP is defined.
pa Processing capacity of application a ∈ A.
Ua Subset of UEs u ∈ U which were assigned to

application a based on the solution provided by the
MP.

σau ∈ N+ Arrival time of task of UE u ∈ U to application
a ∈ A.
TABLE III: Parameters of the SP.

as a decision variable which determines whether the task of
UE u ∈ Ua is admitted on application a; that is it was able to
be scheduled within its latency requirements on a.

αu =

{
1 task of UE u ∈ Ua is admitted on a,
0 otherwise.

We define the decision variable yu ∈ N+ to determine the
time slot at which the task of UE u ∈ Ua starts processing on
application a. Further, we declare suu′ ∈ {0, 1} as a decision
variable to indicate whether the task of UE u ∈ Ua started
processing on application a before the task of a UE u′ ∈ Ua.

suu′ =


1 task of UE u ∈ Ua started processing on
application a before the task of UE u′ ∈ Ua,

0 otherwise.
The objective of the SP is to maximize the number of admitted
tasks (Eq.(33)).

ψSPa
= Maximize

∑
u∈Ua

αu (33)

The SP is subject to several constraints. Eq.(34) is used to
guarantee that the tasks of UE u ∈ Ua can not start processing
on a before its arrival time, if it is admitted.

yu ≥ σauαu ∀u ∈ Ua (34)
Further, the application a should guarantee the consecutive
processing of the task of UE u ∈ Ua during all its required
processing time. Hence, Eq.(35) and Eq.(36) ensure that no
two tasks can be scheduled on a at the same time.
yu ≥ yu′ + du

′

procαu′ −H(1− su′u) ∀u, u′ ∈ Ua : (u! = u′)
(35)

yu′ ≥ yu + duprocαu −H(1− suu′) ∀u, u′ ∈ Ua : (u! = u′)
(36)

where duproc and du
′

proc determine the processing delays of u
and u′ (Eq.(1)). Eq.(37) represents the precedence constraint
of the schedule of the tasks of UEs u and u′ on a.

suu′ + su′u = αuαu′ ∀u, u′ ∈ Ua : (u! = u′) (37)
Finally, Eq.(38) ensures that the total delay experienced by a
task of UE u ∈ Ua does not exceed its latency requirement.

yu + duprocαu ≤ θu ∀u ∈ Ua (38)
Note that, Eq.(37) is non linear and can be easily linearized,
however, we remove the linearization details due to space
limitation.

E. Benders’ Cut

When an SP fails to schedule all the tasks of UEs assigned
to application a by the MP, a Benders’ cut has to be generated
and added to the MP to prune such solution and similar non
feasible ones. In fact, the failure of the SP to schedule all of
the assigned tasks is a result of an allocation of the MP of low
computing resources pa to application a. Hence, a Benders’
cut can be added to guide the MP to either increase the value
of pa while keeping the same assignment of tasks, or to assign
fewer tasks on the application to match those that were able
to be admitted by the SP. While such cut is valid, we believe
it is not strong enough as it only prunes the solutions sent by
the MP without considering any other similar infeasible ones.

In order to define a stronger Benders’ cut, we try to identify
the solutions that are likely to be provided by the MP and
will be infeasible for the SP. Thus, we graphically depict an
application a as a bin of height h = pa and of width w =
θamax − σamin which indicates the time horizon during which
the tasks of UEs u ∈ Ua have to be scheduled and processed
on a (Fig.(3)(b)). Each task u ∈ Ua can be seen as a rectangle
of height hu = j where j is the processing capacity assigned
to it by the MP (j ∈ P au : βjua = 1) and width wu = duproc
representing the processing time of u on a when assigned the
processing capacity j. The scheduling problem can then be
abstracted to a bin-packing problem where a is the bin and
the tasks are the objects to place in a. The geometrical size
of the task u ∈ Ua can increase by its height if we increase j

10

(i.e., more processing capacity) or by its width if we decrease
j (i.e., extend its completion time) (Eq.(1)).

To elaborate, we consider the example shown in Fig.(3)
where we assume two tasks u1 and u2, to be scheduled on
application a1 (Fig.(3)(a)). a1 can be presented as a bin, and
u1 and u2 are the objects to be placed in it (Fig.(3)(b) and
Fig.(3)(c)). In Fig.(3)(b), we assign the task u2 computing
resources j = 6 cycles/time slot which yields a processing
delay of 10 time slots to finish at t11. Increasing the computing
resources to j = 8 cylces/time slot for the processing of
task u2 decreases its processing time to 8 time slots to finish
at t9 (Fig.(3)(c)). However, in both cases it was not possible
to admit u1 on a1 and satisfy its deadline.

Hence, with a processing capacity pa1 =
8 cylces/time slot assigned to application a1, at most
one of both tasks u1 or u2 can be admitted on a1 when
assigned any computing resources j ≤ pa1 . More precisely,
varying the processing capacity j assigned to u1 or u2 will
result in the same infeasible solution. Thus, we conclude that,
if the set of tasks u ∈ Ua were not able to be scheduled by
the SP with pa ∈ P , then for sure they will not be admitted
with any other value (p′a < pa) ∈ P . Therefore, we define
a cut (Eq.(39)) to prune such infeasible solutions where pa
is the processing capacity allocated to application a by the
MP at the previous iteration, Ũa is the set of tasks of UEs
that were admitted by the SP on a and Ûa is the set of UEs
whose tasks were rejected by the SP. Note that Eq.(39) guides
the MP towards assigning to application a at most the same
number of tasks |Ũa| that were admitted by the SP from the
set of tasks in (Ũa ∪ u′∈Ûa

). Such guidance is only applicable
in the case where the tasks in (Ũa ∪ u′∈Ûa

) were assigned
computing resources j ≤ pa. The cut (Eq.(39)) is added for
every task rejected by the SP. Fig.(3)(d) depicts the cut that
needs to be added for the example in Fig.(3).∑
u∈Ũa

∑
j∈Pa

u :(j≤pa)

βjua︸ ︷︷ ︸
Admitted tasks by SP

+
∑

j∈Pa
u′ :(j≤pa)

βju′a︸ ︷︷ ︸
One rejected task by SP

≤ |Ũa|︸︷︷︸
number of admitted tasks by SP

∀u′ ∈ Ûa
∀a ∈ A

(39)
To guarantee that the DTOS-LBBD converges to an optimal
solution, we need to prove that Eq.(39) is a valid Benders’ cut
[31]. A Benders’ cut is valid if it satisfies the following two
conditions [31]:

Condition 1. The cut must exclude the current MP solution
if it is not globally feasible.

Condition 2. The cut must not remove any global feasible
solutions composed of any combination of tasks that were
selected by the MP at a previous iteration and requiring a
processing capacity j ≤ pa.

Chu and Xia [31] show that Condition 1 guarantees finite
convergence if the MP variables have finite domains, and that
Condition 2 guarantees optimality since the cuts never cut
feasible solutions.

Theorem 1. Benders’cut in Eq.(39) is valid.

Proof. To prove the validity of our proposed cut, we need to
show that Condition 1 and Condition 2 are satisfied.

We first prove that Condition 1 is satisfied. To show that
Eq.(39) cuts off infeasible solutions provided by the MP, we
will show that Eq.(39) will not be satisfied if the same set of
tasks were admitted again by the MP on application a. Thus,
we let U (i)

a be the set tasks which were admitted by the MP on
application a at iteration i, hence resulting in a MP solution
which is globally infeasible (as found by the SP). Further, let
Ũ

(i)
a be the set tasks which were admitted by the SP at iteration

i (Ũ (i)
a ⊂ U (i)

a). This will result in the cut depicted in Eq.(40)∑
u∈Ũ(i)

a

∑
j∈Pa

u :(j≤p(i)a)

βjua +
∑

j∈Pa
u′ :(j≤p

(i)
a)

βju′a ≤ |Ũ
(i)
a | ∀u

′∈Û(i)
a

∀a∈A

(40)
If at a subsequent iteration k > i, the same set of tasks Ua
is admitted by the MP, the left hand side in Eq.(40) will be
equal to |Ũ (i)

a | + 1 as shown in Eq.(41) where βj(k)
ua depicts

the MP solution at iteration k.∑
u∈Ũ(i)

a

∑
j∈Pa

u :(j≤p(i)a)

βj(k)
ua

︸ ︷︷ ︸
|Ũ(i)

a |

+
∑

j∈Pa
u′ :(j≤p

(i)
a)

β
j(k)
u′a

︸ ︷︷ ︸
1

= |Ũ (i)
a |+1 ∀u

′∈Û(i)
a

∀a∈A

(41)
The equality in Eq.(41) results from the following. Based
on Eq.(31), a constraint of the MP that should be
valid for its provided solution (βj(k)

ua), we derive that∑
j∈Pa

u
β
j(k)
ua = 1. In addition, by accounting for the va-

lidity of Eq.(30), we obtain
∑
j∈Pa

u :(j≤p(i)a)
β
j(k)
ua = 1.

Hence,
∑
u∈Ũ(i)

a

∑
j∈Pa

u :(j≤p(i)a)
β
j(k)
ua = |Ũ (i)

a |. Similarly,∑
j∈Pa

u′ :(j≤p
(i)
a)

β
j(k)
u′a = 1. This explains the equality depicted

in Eq.(41) which indeed shows that the MP solution violates
the cut presented in Eq.(40). This proves that Condition 1 is
satisfied.

Next, we prove that Condition 2 is satisfied. As we need
to show that the cut (Eq.(39)) does not cut any feasible
solution, we will provide a proof by contradiction where we
consider a globally feasible solution W removed by the cut,
and we show that such solution can not be feasible; where the
contradiction resides. Hence, we first consider the legitimate
infeasible solution I provided at iteration i and which resulted
in the cut shown in Eq.(42), where not all the tasks assigned by
the MP were admitted by the SP with a determined processing
capacity p(i)

a .∑
u∈Ũ(i)

a

∑
j∈Pa

u :(j≤p(i)a)

βjua +
∑

j∈Pa
u′ :(j≤p

(i)
a)

βju′a ≤ |Ũ
(i)
a | ∀u

′∈Û(i)
a

∀a∈A

(42)
The cut in (Eq.(42)) is designed to remove any infeasible
solution composed of a subset of tasks from those in U

(i)
a

for any processing capacity less or equal than p(i)
a assigned to

application a, and should not remove any feasible solutions.
To prove this by contradiction, we consider a globally feasible
solution W found at iteration w > i that was removed by the
cut (Eq.(42)). That is, in W , the tasks in Ũ

(i)
a admitted in I

in addition to one or more tasks in Û (i)
a (that were rejected in

11

I) are admitted in W with a processing capacity p(w)
a ≤ p(i)

a .
Therefore, the opposite of the cut in Eq.(42) which is presented
by Eq.(43) is valid for W .∑
u∈Ũ(i)

a

∑
j∈Pa

u :(j≤p(i)a)

βj(w)
ua +

∑
j∈Pa

u′ :(j≤p
(i)
a)

β
j(w)
u′a > |Ũ (i)

a | (43)

As the tasks in W are assigned a processing capacity p(w)
a ≤

p
(i)
a , their processing time on application a will increase in

comparison to that observed with p
(i)
a , and hence the total

schedule length of all tasks will be greater or equal to that
obtained with p(i)

a . As such solution W is feasible, any other
solution where the tasks experience less processing delay than
that observed with p(w)

a should also be feasible (i.e., tasks meet
their deadlines). For the tasks to experience less processing
delays, they need to be assigned a processing capacity higher
than p(w)

a which is the case of solution I which is infeasible.
Hence, W can not be feasible which completes the proof.

VI. PERFORMANCE EVALUATION

We carry out an extensive empirical study to evaluate
the performance of our DTOS-LBBD approach against the
DTOS-MIP. Further, we explore the engineering impact of
the DTOS problem under varying system parameters and
QoE requirements. We highlight the influence of the different
problems solved (i.e., task offloading, application resource
allocation and task scheduling) on serving multiple vertical
industries while analyzing the effectiveness of our proposed
DTOS-LBBD framework.

Industry Vertical Allowable
latency (ms)

Applied latency
(θu) (ms)

Tactile Internet 1 - 10 7
Factory Automation 0.25 - 10 10
Smart Grid 3 - 20 20
Intelligent transportation Systems (ITS) 10 - 100 50
Tele Surgery ≤ 250 110

TABLE IV: Latency requirements of different industry verti-
cals [32], [33].

A. Experimental Setup
In our numerical study, we consider networks of different

sizes with varying number of MEC servers, each having a
capacity of cm = 20Ghz [6]. We account for |T | = 5 different
types of varying number of IoT applications that belong to
the same industry vertical (unless stated otherwise). Each
IoT application requires minimum computing resources (pamin)
randomly generated between [2−5] Ghz. The IoT applications
are randomly placed on the MEC servers. We assume multiple
UEs offloading tasks belonging to different industry verticals
and hence, are of varying QoE requirements. Thus, we depict
in Table IV the different industry verticals accounted for in
our tests, and present the range of their latency requirements
in addition to the ones used in our tests. We consider that
the number of cycles (µu) demanded by UEs are randomly
generated between [20 − 100] cycles. The upload and edge-
to-edge delays of the offloaded tasks are randomly generated
between [1 − 2] ms and [1 − 3] ms [34] respectively. All
our numerical evaluations are averaged over 5 sets. They are
conducted using Cplex version 12.4 to solve the MIPs on an
Intel core i7-4790 CPU at 3.60 GHZ with 16 GB RAM.

B. DTOS-MIP vs. DTOS-LBBD
We start by evaluating the performance of DTOS-LBBD

against the DTOS-MIP in terms of execution time as we vary
the number of UEs’ offloaded tasks. Increasing the number
of offloaded tasks makes the problem harder to solve given
the limited computing resources. Hence, we also look at the
the impact of such increase on the admission rate. Thus,
we consider a network composed of |M | = 3 MEC servers
and |A| = 15 IoT applications of |T | = 5 different types
representing multiple industry verticals. The deadlines of the
offloaded tasks are randomly generated between [5− 20] ms.
Our results are presented in Table V.

Execution Time (ms) Admission Rate (%)
Nb. of UEs (|U |) DTOS-MIP DTOS-LBBD DTOS-MIP DTOS-LBBD

5 922 56 92 92
10 2359 116.4 84 84
15 15512.6 1214 76 76
20 251218.4 10077.4 67 67
25 3014109.8 21602.6 62.4 62.4

TABLE V: DTOS-MIP vs. DTOS-LBBD.

1- Admission Rate: LBBD is an exact method which is
able to provide the optimal solution as shown in Table V,
where the admission rates of the DTOS-MIP and DTOS-
LBBD are equal. The same table depicts that as the number
of UEs increases the admission rate decreases. Such decrease
is expected as more tasks are contending for the same amount
of computing resources, hence, some of them will be suffering
from high waiting delays on some IoT applications, waiting
for them to be freed. This will negatively impact their latency
requirements which will lead to miss their deadlines and get
rejected from the network.

2- Execution Time: We evaluate the scalability of the DTOS-
LBBD against the DTOS-MIP. Our results shown in Table V
clearly depict that the DTOS-LBBD is much more scalable
than the DTOS-MIP. In fact, it is able to provide the optimal
solution on an average of 95% faster than the DTOS-MIP.
This is because the LBBD learns from the quality of the
solution generated at each iteration to cut off similar infeasible
solutions from the solution space. This will restrict the search
space as the number of iterations increases and hence, will
help reaching the optimal solution faster than the DTOS-MIP.
In addition, the decomposition of the problem into multiple
sub-problems helps in reducing the execution time of DTOS-
LBBD especially that multiple scheduling SPs are run in
parallel using threads.
C. Evaluation of DTOS-LBBD

We evaluate the performance of DTOS-LBBD under differ-
ent system parameters while studying the engineering impact
of the DTOS problem.

1- DTOS-LBBD convergence: In order to evaluate the
performance of DTOS-LBBD, we account for a single test
instance and we plot in Fig.(4), the number of admitted
tasks at each iteration as determined by the MP and the
SPs. We consider a network of |M | = 10 MEC servers
hosting |A| = 15 IoT applications. We account for |U | = 30
UEs’ tasks belonging to a factory automation industry vertical
(θu = 10ms). Fig.(4) depicts that the objective of the MP

12

Fig. 4: DTOS-LBBD convergence.

DTOS-LBBD Execution Time (ms)
Nb. of UEs (|U |) Optimal Solution Optimality Gap< 10% 10% <Optimality Gap< 20%

20 15474.8 2816.6 634.2
30 295859 30607 8085
40 1473334.6 516176.8 27890
50 1760259 419640.3333 38563.33333

TABLE VI: DTOS-LBBD execution time (ms).

represents an upper bound on the optimal objective value while
the number of tasks admitted by the SPs represents a lower
bound. As the number of iterations increases, the objective
value of the MP decreases given that more Benders’ cuts
are added to it. In contrast, the number of tasks admitted
by the SPs varies between the iterations depending on the
requirements of the tasks (i.e., number of cycles, arrival time)
sent by the MP at each of them. However, it is important to
note that the optimal objective value always lies between the
maximum lower bound and the minimum upper bound attained
so far. Further, the variance of the gap existing between the
upper and lower bound provides the option to terminate the
DTOS-LBBD at anytime based on the desired solution quality
and the runtime. For instance, one may terminate the DTOS-
LBBD at iteration 14 with a gap of 9% between the upper and
lower bound, scarifying little in the quality of the solution
while gaining about 75.4% in terms of runtime. If a better
solution quality is desired, one can stop the DTOS-LBBD at
iteration 26 where the gap reaches 4.5%; however, the gain in
terms of computation time is about 53%.

2- Trade-off between optimality gap and runtime: To further
emphasize the fact that the LBBD approach represents an
anytime algorithm that can be stopped at any iteration while
providing a feasible solution, we show in Table VI an averaged
runtime of the DTOS-LBBD using the same network settings
mentioned in the previous paragraph. The results reported in
Table VI depict the runtime of the DTOS-LBBD at the optimal
solution and at the first occurrence of an optimality gap which
is either less than 10% or between 10% and 20%. It is clear
that for a determined number of UEs, the runtime increases
with the decrease of the optimality gap. In fact, the runtime
of DTOS-LBBD increases with the increase of the number of
iterations. In this case, more Benders’ cuts are added to the
MP tightening its solution space, hence, better locating the
optimal solution which is likely to decrease the gap between
the upper bound provided by the MP and the lower bound
given by the SPs. Thus, stopping the DTOS-LBBD at a certain
tolerable gap can lead to high gains in terms of computation
time. For instance, when |U | = 30, 97.26% of gain in runtime
is depicted when the gap is between 10% and 20%, while
89.65% is obtained with a gap less than 10%. Finally, it is
worth noting that as the number of UEs increases, the runtime
of the DTOS-LBBD increases as the size of the problem grows
and hence, the problem becomes harder to solve.

3-Impact of varying the number of UEs: We vary the number
of UEs and evaluate its impact for different industry verticals.

Thus, we consider a network of |U | = 10 MEC servers hosting
|A| = 15 IoT applications. Our results presented in Fig.(5(a))
show that as the number of UEs increases the admission
rate decreases for each vertical industry as more tasks are
contending the same computing resources (IoT applications)
which become overloaded and hence, fail to meet the delay
requirements of all the UEs requesting their service. In fact,
some tasks will suffer from extra waiting delays which will
lead them to miss their deadlines and thus, get rejected from
the network. However, such waiting delays can be tolerated
if the latency requirements increased. For instance, one can
note the tactile Internet vertical where the number of UEs
increased from |U | = 20 to |U | = 40 while the admission
rate decreased by 23% as the limited computing resources
failed to cope with such increase. In contrast, for |U | = 20,
the admission rate increased to 100% for less latency sensitive
tasks such as those belonging to Tele Surgery industry. Further,
as Intelligent Transportation Systems (ITS) and Tele surgery
vertical industries possesses relatively high delay requirement,
the admission rate of UEs requiring such types of services was
not affected by the increase of the number of tasks and was
kept constant to 100%.

4- Impact of varying the number of MEC servers: We study
in Fig.(5(b)) the impact of the increase of the computing
resources for different vertical industries on the admission
rate. Hence, we consider a network of varying number of
MEC servers hosting |A| = 15 IoT applications. We account
for |U | = 30 UEs offloading tasks of varying latency re-
quirements. Fig.(5(b)) shows that adding more MEC servers
in the network increases the amount of computing resources
available. This allows the hosted IoT applications to be
provisioned more processing capacity, which will reduce the
processing time of the assigned tasks. Thus, as tasks will be
processed faster by the applications, others waiting for the
same resource to be freed will experience less waiting delays,
and hence their chances in meeting their deadlines and be
admitted to the network will increase. In addition, one can note
that for a fixed number of MEC servers, the admission rate
increases with the increase of the latency requirements; as less-
sensitive tasks can tolerate more waiting delay on the shared
IoT applications. For instance, with |M | = 3 MEC servers,
the admission rate increased by 73.34% as the deadline of
the tasks increased from 7ms for tactile Internet to 110ms
for Tele surgery. Further, the 100% admission rate depicted
for ITS and Tele surgery vertical industries for the varying
number of MEC servers depicts that |M | = 3 MEC servers

13

1 2 3 4 5

Latency (ms)

0

20

40

60

80

100

120

A
d
m
is
si
o
n
R
at
e
(%

)

|U|=20

|U|=30

|U|=40

63%

50%
40%

88%

74.66%

62.5%

100%100%
95.5%

100%100%100%

Tactile

Internet

Factory

Automation

ITSSmart Grid Tele Surgery

100%100%100%

(a) Admission rate for varying number of UEs.

7 10 20 50 110

Latency (ms)

0

20

40

60

80

100

120

A
d
m
is
si
on

R
at
e
(%

)

|M|=3

|M|=4

|M|=5

100%

72%
78%

83.33%

100% 100% 100% 100% 100%

Tele SurgeryITS

52.66%

26.66%
30.66%34.66%

46%
40.66%

Tactile

Internet

Factory

Automation

Smart Grid

(b) Admission rate for varying number of MEC servers.

Fig. 5: Admission rate of DTOS-LBBD for different verticals.

were enough to admit all the assigned tasks given their relaxed
latency demands.

0 2 4 6 8 10 12 14 16 18 20 22

Edge-to-Edge Delay (ms)

0

20

40

60

80

100

A
d
m
is
si
on

R
at
e
(%

)

DTOS-LBBD96% 95% 94% 91%
86%

68%

16%

Fig. 6: Admission rate over varying edge-to-edge delay.

5- Impact of varying the edge-to-edge delay: To explore
the impact of the edge-to-edge delay on the admission rate, we
consider a network of |M | = 5 MEC servers hosting |A| = 15
IoT applications. We account for |U | = 25 UEs belonging
to a smart grid industry vertical (θu = 20ms) and we fix
the edge-to-edge delays for all the tasks to a defined value.

Our results presented in Fig.(6) show that the edge-to-edge
delay increase becomes prohibitive in allowing the admission
of the tasks. In fact, it is of the best interest of each task
to be processed on an MEC server attached to its serving
eNB in order to overcome the edge-to-edge delay. However,
as the number of IoT applications is fixed in the network,
some MEC servers may not be hosting certain types, further,
some of their deployed applications may be overloaded. This
will force the tasks served by eNB attached to those MEC
servers to travel through the network to be processed on an IoT
application hosted on another MEC server, which will make
them suffer from high edge-to-edge delay. With their latency-
sensitive requirements, the mentioned tasks will be left with
very little processing time which the IoT application on which
they are assigned might fail to meet, hence, leading to their
rejection from the network.

VII. CONCLUSION

In this paper, we motivated and studied the DTOS prob-
lem which jointly addresses the task offloading, application
resource allocation in addition to the task scheduling problems

14

in a MEC network. We alleviate virtualization technologies
capabilities in being able to automatically modify their allo-
cated computing resources, by being the first to study the task
scheduling problem under undetermined computing resources
allocation. Given the complexity of DTOS, we presented
a novel decomposition strategy implementing the LBBD
technique. Our novel DTOS-LBBD method decomposes the
problem into a MP which solves the task offloading and
application resource allocation problems; and multiple SPs,
each addressing the scheduling of tasks on a single used IoT
application. DTOS-LBBD is an exact method characterized
by an anytime algorithm providing the opportunity to be
terminated at any iteration, hence, realizing the trade-off be-
tween the solution quality and the computation time. Through
extensive simulations, we show that the DTOS-LBBD can
achieve more than 140 order of magnitude improvement in
terms of runtime compared to the DTOS-MIP and can serve
as a benchmark algorithm to compare against other methods.
Further, we explored the interleaving dependence and implica-
tions of the aforementioned DTOS sub-problems for different
vertical industries with variable latency requirements. While
mainly targeting low-latency services, we evaluated the trade-
offs existing between the number of MEC servers, the number
of tasks and the latency requirements.

REFERENCES

[1] Tarik Taleb, Konstantinos Samdanis, Badr Mada, Hannu Flinck, Sunny
Dutta, and Dario Sabella. On multi-access edge computing: A survey
of the emerging 5g network edge cloud architecture and orchestration.
IEEE Communications Surveys & Tutorials, 19(3):1657–1681, 2017.

[2] Pavel Mach and Zdenek Becvar. Mobile edge computing: A sur-
vey on architecture and computation offloading. arXiv preprint
arXiv:1702.05309, 2017.

[3] 5G Infrastructure PPP Association et al. 5g vision-the 5g infrastruc-
ture public private partnership: the next generation of communication
networks and services. White Paper, February, 2015.

[4] Dave Evans. The internet of things: How the next evolution of the
internet is changing everything. CISCO white paper, 1(2011):1–11,
2011.

[5] Ericsson. New capabilities with distributed cloud.
[6] Tuyen X Tran and Dario Pompili. Joint task offloading and resource

allocation for multi-server mobile-edge computing networks. arXiv
preprint arXiv:1705.00704, 2017.

[7] Gopika Premsankar, Mario Di Francesco, and Tarik Taleb. Edge
computing for the internet of things: a case study. IEEE Internet of
Things Journal, 5(2):1275–1284, 2018.

[8] Haisheng Tan, Zhenhua Han, Xiang-Yang Li, and Francis CM Lau.
Online job dispatching and scheduling in edge-clouds. In INFOCOM
2017-IEEE Conference on Computer Communications, IEEE, pages 1–
9. IEEE, 2017.

[9] Xinchen Lyu, Wei Ni, Hui Tian, Ren Ping Liu, Xin Wang, Georgios B
Giannakis, and Arogyaswami Paulraj. Optimal schedule of mobile edge
computing for internet of things using partial information. IEEE Journal
on Selected Areas in Communications, 35(11):2606–2615, 2017.

[10] Alex Reznik, Rohit Arora, Mark Cannon, Luca Cominardi, Walter
Featherstone, Rui Frazao, Fabio Giust, Sami Kekki, Alice Li, Dario
Sabella, et al. Developing software for multi-access edge computing.
ETSI, White Paper, (20), 2017.

[11] Hiroyuki Tanaka, Masahiro Yoshida, Koya Mori, and Noriyuki Taka-
hashi. Multi-access edge computing: A survey. Journal of Information
Processing, 26:87–97, 2018.

[12] Carla Mouradian, Diala Naboulsi, Sami Yangui, Roch H Glitho,
Monique J Morrow, and Paul A Polakos. A comprehensive survey
on fog computing: State-of-the-art and research challenges. IEEE
Communications Surveys & Tutorials, 20(1):416–464, 2017.

[13] Lin Wang, Lei Jiao, Jun Li, and Max Mühlhäuser. Online resource
allocation for arbitrary user mobility in distributed edge clouds. In

Distributed Computing Systems (ICDCS), 2017 IEEE 37th International
Conference on, pages 1281–1290. IEEE, 2017.

[14] Xiang Sun and Nirwan Ansari. Latency aware workload offloading in
the cloudlet network. IEEE Communications Letters, 21(7):1481–1484,
2017.

[15] Mike Jia, Weifa Liang, and Zichuan Xu. Qos-aware task offloading
in distributed cloudlets with virtual network function services. In
Proceedings of the 20th ACM International Conference on Modelling,
Analysis and Simulation of Wireless and Mobile Systems, pages 109–
116. ACM, 2017.

[16] Qiang Fan and Nirwan Ansari. Application aware workload allocation
for edge computing-based iot. IEEE Internet of Things Journal,
5(3):2146–2153, 2018.

[17] Kostas Katsalis, Thanasis G Papaioannou, Navid Nikaein, and Leandros
Tassiulas. Sla-driven vm scheduling in mobile edge computing. In
Cloud Computing (CLOUD), 2016 IEEE 9th International Conference
on, pages 750–757. IEEE, 2016.

[18] Yuyi Mao, Jun Zhang, and Khaled B Letaief. Joint task offloading
scheduling and transmit power allocation for mobile-edge computing
systems. In Wireless Communications and Networking Conference
(WCNC), 2017 IEEE, pages 1–6. IEEE, 2017.

[19] Lin Wang, Lei Jiao, Dzmitry Kliazovich, and Pascal Bouvry. Reconciling
task assignment and scheduling in mobile edge clouds. In Network
Protocols (ICNP), 2016 IEEE 24th International Conference on, pages
1–6. IEEE, 2016.

[20] Ivan Farris, Tarik Taleb, Hannu Flinck, and Antonio Iera. Providing
ultra-short latency to user-centric 5g applications at the mobile network
edge. Transactions on Emerging Telecommunications Technologies,
29(4):e3169, 2018.

[21] Pawani Porambage, Jude Okwuibe, Madhusanka Liyanage, Mika Yliant-
tila, and Tarik Taleb. Survey on multi-access edge computing for internet
of things realization. arXiv preprint arXiv:1805.06695, 2018.

[22] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Chris-
tian Esteve Rothenberg, Siamak Azodolmolky, and Steve Uhlig.
Software-defined networking: A comprehensive survey. Proceedings of
the IEEE, 103(1):14–76, 2015.

[23] Curtis Yu, Cristian Lumezanu, Abhishek Sharma, Qiang Xu, Guofei
Jiang, and Harsha V Madhyastha. Software-defined latency monitoring
in data center networks. In International Conference on Passive and
Active Network Measurement, pages 360–372. Springer, 2015.

[24] Azure windows vm sizes - compute optimized.
[25] Lei Yang, Jiannong Cao, Hui Cheng, and Yusheng Ji. Multi-user

computation partitioning for latency sensitive mobile cloud applications.
IEEE Transactions on Computers, 64(8):2253–2266, 2015.

[26] Mutsunori Yagiura and Toshihide Ibaraki. The generalized assignment
problem and its generalizations.

[27] David Pisinger and Mikkel Sigurd. Using decomposition techniques and
constraint programming for solving the two-dimensional bin-packing
problem. INFORMS Journal on Computing, 19(1):36–51, 2007.

[28] Yu N Sotskov and Natalia V Shakhlevich. Np-hardness of shop-
scheduling problems with three jobs. Discrete Applied Mathematics,
59(3):237–266, 1995.

[29] John N Hooker and Greger Ottosson. Logic-based benders decomposi-
tion. Mathematical Programming, 96(1):33–60, 2003.

[30] John N Hooker. Planning and scheduling by logic-based benders
decomposition. Operations Research, 55(3):588–602, 2007.

[31] Yingyi Chu and Quanshi Xia. Generating benders cuts for a general
class of integer programming problems. In International Conference on
Integration of Artificial Intelligence (AI) and Operations Research (OR)
Techniques in Constraint Programming, pages 127–141. Springer, 2004.

[32] Maria A Lema, Andres Laya, Toktam Mahmoodi, Maria Cuevas,
Joachim Sachs, Jan Markendahl, and Mischa Dohler. Business case
and technology analysis for 5g low latency applications. IEEE Access,
5:5917–5935, 2017.

[33] Philipp Schulz, Maximilian Matthe, Henrik Klessig, Meryem Simsek,
Gerhard Fettweis, Junaid Ansari, Shehzad Ali Ashraf, Bjoern Almeroth,
Jens Voigt, Ines Riedel, et al. Latency critical iot applications in 5g:
Perspective on the design of radio interface and network architecture.
IEEE Communications Magazine, 55(2):70–78, 2017.

[34] Ruozhou Yu, Guoliang Xue, and Xiang Zhang. Application provisioning
in fog computing-enabled internet-of-things: A network perspective. In
IEEE INFOCOM 2018-IEEE Conference on Computer Communications,
pages 783–791. IEEE, 2018.

	Introduction
	Literature review
	Joint Task Offloading and Resource Allocation
	Task Scheduling
	Novelty of our Work in Comparison to the Literature

	System Model
	UEs Computation Tasks
	Experienced Delays

	Dynamic Task Offloading and Scheduling - A mixed integer program (DTOS-MIP)
	Problem Definition
	Problem Formulation
	DTOS Complexity

	DTOS-LBBD: A Logic Based Benders Decomposition
	LBBD in a Nutshell
	DTOS Decomposition Strategy
	The Master Problem (MP)
	The Sub-Problem (SP)
	Benders' Cut

	Performance Evaluation
	Experimental Setup
	DTOS-MIP vs. DTOS-LBBD
	Evaluation of DTOS-LBBD

	Conclusion
	References

