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Optimized Provisioning of Edge Computing
Resources with Heterogeneous Workload in IoT

Networks
Nouha Kherraf, Hyame Assem Alameddine, Sanaa Sharafeddine, Chadi Assi, Ali Ghrayeb

Abstract—The proliferation of smart connected Internet of
Things (IoT) devices is bringing tremendous challenges in meet-
ing the performance requirement of their supported real-time
applications due to their limited resources in terms of computing,
storage, and battery life. In addition, the considerable amount of
data they generate brings extra burden to the existing wireless
network infrastructure. By enabling distributed computing and
storage capabilities at the edge of the network, Multi-access Edge
Computing (MEC) serves delay sensitive, computationally inten-
sive applications. Managing the heterogeneity of the workload
generated by IoT devices, especially in terms of computing and
delay requirements, while being cognizant of the cost to network
operators requires an efficient dimensioning of the MEC-enabled
network infrastructure. Hence, in this paper, we study and formu-
late the problem of MEC Resource Provisioning and Workload
Assignment for IoT services (RPWA) as a Mixed Integer Program
(MIP) to jointly decide on the number and the location of edge
servers and applications to deploy, in addition to the workload
assignment. Given its complexity, we propose a decomposition
approach to solve it which consists of decomposing RPWA into
the Delay Aware Load Assignment (DALA) sub-problem and
the Mobile Edge Servers Dimensioning (MESD) sub-problem.
We analyze the effectiveness of the proposed algorithm through
extensive simulations and highlight valuable performance trends
and trade-offs as a function of various system parameters.

Index Terms—Multi-access edge computing, Internet of Things,
5G, task offloading, Resource allocation, Optimization, Operation
research.

I. INTRODUCTION

The number of Internet-connected devices (e.g., smart
phones, tablets, smart cameras, industrial sensors, connected
cars, smart traffic lights, etc.) is expected to exceed 50 billions
by 2020 [1], hence inadvertently realizing the paradigm of
the so-called Internet of Things/Everything (IoT/E). Given the
immense proliferation of IoT devices, continuous advance-
ments and development of data analytics and networking will
empower them with enhanced real-time capabilities [2]. For
instance, advances in Radio Frequency Identification (RFID)
and Near Field Communication (NFC) technologies made real-
time monitoring of almost every entity in a supply chain
possible, from inventory tracking to after-sales services. More-
over, sensor technologies have enabled real-time monitoring
and processing of traffic flows and vehicles’ information
in an intelligent traffic ecosystem. The integration of IoT
devices in the healthcare domain enabled tracking patients and
monitoring their vital signs [3]. However, owing to the shear
volume of data these devices generate, they fall short in terms
of computing capacity and storage [4], hence restricting their

capabilities and hindering the performance of the applications
they can support. Traditionally, the cloud has been the go-
to solution for providing storage and computing resources to
process the vast amount of data generated by IoT devices and
to execute the necessary analytics [5], [6]. However, offloading
the workload generated by these devices to a remote cloud
infrastructure for processing is subject to high communication
delays and energy consumption which will eventually violate
the latency requirements of real-time IoT applications [7], [8].

Mobile Edge Computing (MEC) has emerged as a new
paradigm to overcome the aforementioned challenges. By
leveraging a distributed range of computing and storage re-
sources deployed in close proximity to User Equipment (UE),
MEC provides the IoT devices the opportunity to offload
and run their workload on a wide range of IoT applications
deployed on edge servers, hence, supplying them with varying
Quality of Service (QoS) requirements [9]. Unlike the tra-
ditional centralized cloud, edge servers are collocated with
4G/5G cellular Base Stations (BSs) [10] deployed at the edge
of the network. Recently, the term MEC has been redefined
as Multi-access Edge Computing, extending its applicability to
include new connectivity options such as WiFi, Z-wave and
fixed access technologies and, hence, enabling the support of a
wider variety of devices and use cases [11]. Another paradigm
that has been introduced by Cisco is fog computing which also
brings the cloud’s intelligence and processing capabilities to
the edge of the network. Fog, however, offers a multi-layer
cloud computing architecture where fog nodes are deployed
in different network tiers (i.e., small base stations, vehicles,
wifi access point, and user terminals) [12][13]. The terms
fog and edge computing have been used interchangeably in
the literature [14]. Further, edge computing capabilities can
be enabled at business premises and accessed through wifi
Access Points (APs) and are typically known as cloudlets
[13]. IoT devices access these edge resources by connecting
via an existing wireless access network technology, therefore
providing faster response times and saving bandwidth by
reducing the load on the network core [7], [8].

In order to enable MEC capabilities, current network infras-
tructure should be dimensioned to support the deployment of
edge servers. However, the cost of such deployment is one of
the major obstacles facing network operators given the massive
number and spatial spread of IoT devices which are expected
to be served within tolerable/low delays [7], [15]. In addition,
as the offloaded IoT workloads are required to be processed
by different types of applications, usually running on Virtual
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Machines (VMs) hosted on the edge servers, the decision on
the number of instances and the computing resources to assign
to each of them becomes challenging and has a direct impact
on the response time achieved. Finally, as many IoT devices
may be requiring the edge servers capabilities at the same time,
efficient and dynamic assignment of their workloads to the
hosted applications is required. Since collectively addressing
these challenges is a difficult task, the authors of [8] assumed
already deployed cloudlets (e.g. edge servers) and addressed
the problem of IoT applications placement and workload
assignment. The problem of joint application placement on
fog nodes and data stream routing from IoT devices to them
has been considered recently in [7] with both bandwidth and
delay performance guarantees. Task offloading to cloudlets
interconnected through a metropolitan wide area network has
also been studied in [16], where tasks require virtual functions
for their processing. In addition, the optimal placement of
cloudlets in a metropolitan area network has been addressed
in [17] with the objective of balancing the workload among
the deployed cloudlets.

Unlike the work in the literature, we envision an envi-
ronment with a large number of IoT devices requesting a
set of delay-sensitive services (e.g., smart cities, connected
cars, industrial control, environmental monitoring, etc.) [18],
[19] that can be offered by a wide range of applications.
We address the MEC Resource Provisioning and Workload
Assignment for IoT services (RPWA) problem which consists
of jointly solving: 1) The MEC dimensioning sub-problem
which consists of deciding on the number and the placement of
edge servers; 2) The IoT applications placement sub-problem
which aims at determining the number and the placement of
different types of applications’ instances to deploy on the edge
servers, in addition to deciding on the computing resources
(i.e., CPU shares) to allocate to each of them; 3) The workload
assignment sub-problem which proposes the assignment of
the workload generated by IoT devices to the required type
of application instance hosted on a suitable edge server and
able to achieve its required response time. We formulate the
RPWA problem as a Mixed Integer Program (RPWA-MIP)
with the objective of minimizing the edge servers deployment
cost. As we prove its NP-Hardness, we exploit the inter-
dependency existing between the three aforementioned sub-
problems composing it, and propose a decomposition approach
(RPWA-D) to address its different aspects in a more efficient
and scalable strategy. Hence, we divide the RPWA problem
into two sub-problems: 1) The Delay Aware Load Assignment
(DALA) sub-problem which solved the workload assignment
sub-problem while deciding on the number and the computing
resources to assign to the applications to deploy; and 2)
The Mobile Edge Servers Dimensioning (MESD) sub-problem
which solves the MEC dimensioning sub-problem while de-
ciding on the placement of the applications that needs to be
deployed (i.e., provided by DALA) on the provisioned edge
servers. Through extensive numerical evaluation, we explore
and analyze the different trade-offs existing between the edge
servers deployment cost and the workloads of variable QoS
requirements which can be served. Under varying parame-
ters, we show that our proposed decomposition approach is

efficient, scalable and provide comparable results to those
provided by the RPWA-MIP.

The remainder of the paper is organized as follows. Section
II presents the literature review. Section III introduces the
system model. Section IV defines and formulates the RPWA
problem. Section V presents and explains the proposed de-
composition approach. Our numerical evaluation is depicted
in Section VI. We conclude in Section VII.

II. LITERATURE REVIEW

The new concept of MEC has stimulated much research
work in the past few years, of which we are going to survey
a prime selection of the most closely related.

A. Task offloading and resource allocation in MEC

The authors of [20] have recently presented a survey on
exploiting MEC technologies for the realization of IoT appli-
cations. The authors in [21] considered the cloudlets placement
problem in a Software Defined Networking (SDN)-based IoT
network with a focus on minimizing the average cloudlet ac-
cess delay. They assumed that the SDN control plane manages
the routing of IoT devices’ requests by commanding a set
of SDN-enabled APs. They proposed an enumeration-based
algorithm that finds the optimal placement of the cloudlets by
evaluating all possible combinations. To reduce the complex-
ity, they devised another ranking-based near-optimal algorithm
for the cloudlets placement. The authors, however, did not
consider the cloudlets deployment cost.

The work in [22] accounted for the static and dynamic
design of an edge cloud network, while respectively consid-
ering the absence and the presence of user mobility. Thus,
they presented a column generation approach to determine
the sites on which the cloudlets have to be installed. Then,
they determined the BSs to cloudlets assignment. Finally, the
authors addressed the resource allocation problem in terms
of determining the placement of each VM required by an
end device with respect to its mobility conditions and latency
requirement. Although the authors in [22] took into account
the cloudlets deployment cost, they did not consider the
sharing of VMs between multiple end devices.

The authors in [23] developed an Integer Linear Program
(ILP) model for the placement of IoT application services.
Unlike [22], the authors considered that VMs could be shared
by multiple IoT devices. They solved the model iteratively by
considering a new objective at each iteration. These objectives
not only addressed the cost efficiency of operating the network
(i.e., minimizing the number of active computation nodes and
gateways, maximizing the number of admitted applications
requests, etc.) but also accounted for the latency reduction
(minimizing the hop count). The work in [24] considered the
data placement of IoT applications in a fog infrastructure with
the objective to minimize the network latency. The authors
developed a divide and conquer heuristic in which the fog
nodes were weighted and partitioned, resulting in a data
placement sub-problem for each partition. Each sub-problem
was then solved using algorithms implemented in the simulator
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iFogSim. However, in both works [23] [24], specific latency
requirement for each IoT application was overlooked.

Unlike [23], [24], the authors in [7] jointly considered the
IoT applications latency and bandwidth requirements. They
tackled the applications’ requests assignment problem in a
fog infrastructure and developed a provisioning model that is
responsible for applications’ data routing and assignment to
the fog nodes. However, they considered that each application
has specific hardware requirements, preventing it from being
able to be served by any of the fog nodes as some of them
may be deprived from the requested hardware resources. The
authors in [8] tackled both the resource allocation and IoT
application requests assignment problems in an edge infras-
tructure. They accounted for the limited computing resources
of the cloudlets in addition to both network and computation
delays of the application requests. They assumed that any IoT
application has a specific latency requirement and, unlike [7],
can be hosted on top of a VM deployed on any cloudlet.
Within this framework, the authors were aiming at minimizing
the response time of the applications’ requests. Hence, they
developed an algorithm that sequentially solves the assignment
and resource allocation problems.

The problem of optimal placement of cloudlets in a
metropolitan area network, where cloudlets are assumed to
be collocated with APs, has been addressed in [17]. Given
the complexity of the problem, the authors presented two
heuristic solutions. They also considered the users to cloudlet
assignment problem to minimize the response time, and noted
that routing traffic normally to the closest cloudlet may not
always yield a satisfactory solution in terms of response times
and, thus, it is necessary to balance the workload among
the deployed cloudlets. Task offloading to cloudlets hosting
virtual network functions has been considered in [16], and
more recently, in [25] for MEC in software defined ultra dense
networks.

The resource allocation problem was also considered in
the central cloud by the authors of [26], [27]. In [26], the
authors considered a cloud resource provisioning scheme to
reduce the price the customers have to pay for leasing cloud
resources using stochastic optimization. However, in [27],
the authors presented a bidding strategy to decide on the
customers to serve with the objective of maximizing the cloud
provider profit while minimizing the amount of Service Level
Agreement Violation (SLA). While in both works the cloud
infrastructure was considered as available, we aim in this work
at planning and dimensioning the edge cloud infrastructure.

B. Novelty of our work

To the best of our knowledge, the work in the literature
focused on solving at most two of the aforementioned subprob-
lems; MEC dimensioning, IoT placement and workload as-
signment. Further, most of the work mentioned above assumed
a homogeneous workload or a single user equipment. While
the work in [8] considered the heterogeneity of applications’
requests in an IoT environment, they, however, did not address
the MEC dimensioning problem and assumed a network where
the edge servers are already placed. The novelty of our

work is, therefore, manifested by jointly solving the three
above mentioned problems and considering a large scale IoT
environment with heterogeneous applications’ requests.

III. SYSTEM MODEL

A. MEC-enabled Smart Environment

The system model we target resembles the scenario depicted
in Fig. 1. A metropolitan area encompassing a massive num-
ber of Internet-enabled devices generating requests to diverse
IoT applications to support services such as smart health,
intelligent transportation, and environmental monitoring. We
assume a multi-access edge cloud where IoT applications
are hosted on edge servers, fog nodes or cloudlets, that are
accessible through a set of WiFi APs (or cellular BSs). We
also assume a backbone network infrastructure available to
interconnect the APs to each other. Hence, some APs may
not need to host edge servers or may host an edge server
but not support a particular IoT application. This enables
a graceful, rather than ubiquitous, cost-effective deployment
of edge servers. We further assume that a wide range of
devices spatially distributed throughout the smart environment
generate workload by requesting given IoT services provided
by corresponding application types hosted on selected edge
servers. This can lead to scenarios where a given device can
access applications on edge servers co-located with APs other
than its serving AP. Therefore, the various edge servers hosting
IoT applications should be accessible by devices from various
locations via the backbone network infrastructure. Formally,
the network is abstracted as a graph G(N,E), where N is
the set of nodes; N = L ∪ R is composed of a set of APs
(or BSs) dispersed at various accessible locations (l ∈ L) in
the network, and R represents the set of backbone network
equipment (e.g., routers, switches, etc.). All nodes in the
network are interconnected with a set E of communication
links. Each IoT device connects to the closest AP, and can
utilize services provided by IoT applications deployed at either
an edge server attached to its serving AP or an edge server
attached to another AP that is accessible through the network
backbone. Let M be the set of edge servers, each with a
computing capacity cm. An edge server m once deployed at
AP l will incur a location-dependent deployment cost πl

m. Let
A be the set of all IoT applications; an application a ∈ A
will be hosted on a VM running on one of the edge servers.
Each application provides certain functions for a particular
IoT service and, hence, is subject to workload generated from
IoT devices that are subscribed to this particular service; for
example, a smart camera may request its video streams to be
processed by an application providing rendering or surveil-
lance functionality. Applications are classified into different
types T (i.e., video processing, face recognition, etc.) and,
thus, we define µt

a ∈ {0, 1} to denote that an application a
is of type t. In addition, each application requires minimum
computing resources pamin to run and efficiently handle the
computation of the minimum load of the IoT devices accessing
it [28]. In order to avoid assigning all the computing resources
of an edge server to one IoT application, we denote by pamax

the maximum computing resources that can be assigned to



4

Fig. 1: MEC-enabled smart environment.

an IoT application a ∈ A. More precisely, pamin and pamax

are the minimum and maximum computing resources that
can be assigned to the VM hosting the IoT application a.
Further, given that some services require ultra-low latency
(e.g., tactile Internet or industrial control), each application
of type t ∈ T is subject to a maximum allowable response
time δt to ensure satisfactory QoS. The aggregate workload
requesting the service provided by applications of type t
generated from the devices located within the coverage area
of AP deployed at location l is assumed to follow a Poisson
process, with an arrival rate λtl (requests/sec), where each
request has a given average computing size wt (e.g., CPU
cycles needed to complete the task). This workload can be
processed by any hosted application of the requested type t.
Further, a given application may receive workload requests
from different locations in the network. The higher the inten-
sity of the offloaded workload on a particular application, the
more computing resources this application should be provided
in order to keep the processing and queuing delays of the
corresponding tasks low. Thus, we denote by pa (measured
in cycles/second), the computing capacity assigned to the IoT
application a through the VM hosting it. Further, given that an
application hosted on a VM running on an edge server could
be shared by multiple loads coming from different locations
l ∈ L following a Poisson process, and the load computation
time is exponentially distributed, each application is modeled
as an M/M/1 queue [29], with an aggregate arrival rate of IoT
requests and a service rate based on the processing capacity pa
of each application. Finally, as mentioned earlier, a request can
be either processed by its home edge server (the edge server
that is co-located with its serving AP l) or processed by a
different edge server at AP deployed at location l′. Therefore,
we denote by hl

′

l the network delay representing the delay
incurred by routing the workload request from the serving AP
at location l to the assigned edge server at location l′.

B. Problem Description

Providing efficient IoT devices workload offloading and
processing requires upgrading existing networks to become
MEC-enabled. Thus, based on the proposed system model
(Section III-A) and while accounting for stringent latency
requirement of the offloaded workload, we study and explore
three interleaving challenges intrinsic for a successful cost-
efficient dimensioning of current networks to become MEC-
enabled. Hence, we exploit the following sub-problems:

1) The MEC dimensioning sub-problem which consists of
deciding on the number and the placement of edge servers.
Such decision is affected by the workload to be offloaded from
the different existing locations and their required response
times. Further, the computing capacities of the edge servers to
deploy at different locations may also be variable and subject
to the workload which it will be processing. Hence, as edge
servers of variable computing capacities may be available
for deployment, the MEC dimensioning sub-problem seeks
at choosing those with enough computing capacity to deploy
at specific locations. Such decision has a direct impact on
the deployment cost which increases with the edge servers
computing resources.

2) The IoT applications placement sub-problem which aims
at determining the number and the placement of different types
of applications’ instances to deploy on the edge servers. Such
decision is coupled to the size of the workload requesting a
specific application type from each location and its latency
requirement. For instance, as each application instance can
only be deployed on exactly one edge server, the choice of
the edge server that will host it will affect the response time
of the workload that it will be processing. Such response
time includes the network delay (e.g., if the application was
deployed on an edge server collocated to an AP/BS other
than its serving AP/BS), in addition to the processing and
queuing delays. These latter are respectively dependent on
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the processing capacity assigned to the application and the
amount of workloads assigned to this specific application.
Thus, the IoT applications placement sub-problem is also
required to decide on the processing capacity pa to assign
to the application instance to deploy. Note that, the choice
of pa limits the choice of edge servers that can host the
application instance, as some of them may not have enough
computing resources left to host it. In fact, the computing
capacity of edge servers should be optimally allocated to
different types of applications in order to successfully meet
the delay requirements of the assigned workloads. Further, the
processing resources (pa) assigned to the application instances
to deploy impacts the deployment cost as more edge servers
may be needed to accommodate those applications.

3) The workload assignment sub-problem which consists
of assigning the workload generated by IoT devices to the
required type of application instance hosted on a suitable edge
server, able to meet its response time. It is important to note
that assigning the workloads to the closest edge server may not
yield an optimal or feasible solution. In fact, the closest edge
server collocated to the serving AP/BS may not be hosting
the required type of application. Alternatively, the processing
capacity assigned to the required application hosted on the
edge server may not be enough to serve the workload with
respect to its latency requirement. Hence, as we note the inter-
dependencies between the three aforementioned sub-problems,
we define a joint problem entitled MEC Resource Provisioning
and Workload Assignment for IoT services (RPWA) which we
mathematically formulate next.

IV. RPWA - A MIXED INTEGER PROGRAM
(RPWA-MIP)

A. Problem Definition

Definition 1. Given G(N,E), a set M of edge servers, a
set A of IoT applications of different types, and a set of
IoT devices requesting their workloads to be offloaded and
processed by a specific application type within a determined
response time δt, determine the lowest cost deployment of
edge servers and IoT applications in G(N,E), the processing
capacity to allocate to the deployed applications, in addition
to the assignment of workloads to these latter with respect to
their latency requirements.

B. Problem Formulation

Table I delineates the parameters used throughout the for-
mulation of RPWA-MIP presented below. We define a variable
xlm to determine whether edge server m ∈ M is deployed at
location l ∈ L.

xlm =

{
1 if edge server m ∈M is deployed at location l ∈ L,
0 otherwise.

Our objective is to minimize the edge servers deployment cost
while meeting the delay requirements of the workloads re-
questing to be processed by a specific type of IoT applications:

Minimize
∑
l∈L

∑
m∈M

xlm(πl + kcm) (1)

Network Inputs
G(N,E) Network of N nodes where N = L∪R and E links

connecting them.
L Set of locations mounted with APs/BSs.
R Set of backbone network equipment.
M Set of edge servers to be deployed in G(N,E).
A Set of IoT applications to be hosted in m ∈M .
T Set of applications’ types.
cm ∈ R+ Processing capacity of edge server m ∈M .
πl ∈ Z+ Setup cost of an edge server at location l ∈ L.
k ∈ Z+ Cost of a unit of processing capacity.
µt
a ∈ {0, 1} Parameter which depicts that application a ∈ A is

of type t ∈ T (1) or not (0).
δt ∈ R+ Maximum allowable response time when utilizing

an application of type t ∈ T .
pamin ∈ R+ Minimum processing capacity required by applica-

tion a ∈ A.
pamax ∈ R+ Maximum processing capacity that can be assigned

to application a ∈ A.
λtl ∈ Z+ Arrival rate of requests for an application of type

t ∈ T generated by IoT devices associated to
AP/BS at location l ∈ L.

wt ∈ Z+ Average number of CPU cycles per request for an
application of type t .

hl
′

l ∈ R+ Network delay of a request from its home edge
server at l ∈ L to its assigned edge server at l′ ∈ L.

TABLE I: Parameters of RPWA-MIP.

In order to meet our objective, several constraints, that we
elucidate in the following, have to be respected. Let ylma be a
decision variable that determines whether application a ∈ A
is placed on edge server m ∈M deployed at location l ∈ L.

ylma =

{
1 if IoT application a is placed on m at location l,
0 otherwise.

In order to simplify some of the constraints, we define σl
a to

determine whether application a is placed at location l.

σl
a =

{
1 if IoT application a is placed at location l,
0 otherwise.

zalt is another decision variable that indicates whether the
workload generated by IoT devices at location l ∈ L demand-
ing an application of type t ∈ T are mapped to application
a ∈ A.

zalt =


1 if workload generated by devices at location l and
demanding an application of type t is mapped to a,
0 otherwise.

Further, let pa ∈ R+ specifies the amount of computing
resources assigned to application a ∈ A. Hence, the RPWA
problem constraints can be classified as follows:
Placement of edge servers
First, we need to guarantee that each edge server m ∈ M
is deployed on at most one location l ∈ L (Eq.(2)), that is:∑

l∈L x
l
m = 1 if edge server m is deployed at location l,

and 0 otherwise. Further, Eq.(3) guarantees that each location
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can host at most one edge server; hence,
∑

m∈M xlm = 1 if
location l is hosting one edge server, and 0 otherwise.∑

l∈L

xlm ≤ 1 ∀m ∈M (2)

∑
m∈M

xlm ≤ 1 ∀l ∈ L (3)

Placement of applications on edge servers
Once the edge servers are deployed, we provision IoT ap-
plications and assign computing resources to them. Eq.(4)
ensures that each application a ∈ A is placed on at most one
edge server m ∈ M . Thus, if application a is placed on an
edge server m, then

∑
l∈L

∑
m∈M ylma = 1, and 0 otherwise.

Further, each application’s computing resource is guaranteed
a minimum value pamin (Eq.(5)), and limited to a maximum
value pamax (Eq.(6)).∑

l∈L

∑
m∈M

ylma ≤ 1 ∀a ∈ A (4)

pa ≥
∑
m∈M

∑
l∈L

ylma pamin ∀a ∈ A (5)

pa ≤
∑
m∈M

∑
l∈L

ylma pamax ∀a ∈ A (6)

Constraint (7) guarantees that all IoT applications provisioned
on an edge server m ∈ M do not exceed the capacity cm of
m. Constraint (8) guarantees that each application a ∈ A can
only be placed on a deployed edge server m ∈M .∑

l∈L

∑
a∈A

pay
lm
a ≤ cm ∀m ∈M (7)

ylma ≤ xlm
∀l∈L

∀m∈M
∀a∈A

(8)

Further, (9) ensures that if ylma = 1 then σl
a = 1.

σl
a =

∑
m

ylma
∀l∈L
∀a∈A (9)

Workload assignment
Once applications are placed, the workload generated by
devices associated to an AP/BS at location l ∈ L is assigned
to an IoT application of the requested type t ∈ T . Thus,
constraint (10) ensures that zalt gets a value, for some a, when
λtl > 0; H is a big integer number and λtl << H .∑

a∈A

zalt ≥
λtl
H

∀l∈L
∀t∈T (10)

Constraint (11) guarantees that the generated load from loca-
tion l requesting application of type t is mapped to at most
one IoT application a:∑

a∈A

zalt ≤ 1 ∀l∈L
∀t∈T (11)

In addition, we need to make sure that each load is mapped
to an application a ∈ A providing the same requested type t:

zalt ≤ µt
aλ

t
l

∀t∈T
∀l∈L
∀a∈A

(12)

Note that Eq.(12) guarantees that zalt = 0 if there are no
requests for an application of type t coming from location
l, i.e., λtl = 0. Constraint (13) ensures that requests are only
mapped to applications that are deployed on an edge server
m ∈ M placed at some location l ∈ L and constraint (14)
prevents hosting an application a on an edge server m if it is
not processing any load.

zalt ≤
∑
m∈M

∑
l′∈L

yl
′m
a

∀l∈L
∀t∈T
∀a∈A

(13)

∑
m∈M

∑
l∈L

ylma ≤
∑
l∈L

∑
t∈T

zalt ∀a ∈ A (14)

Delay Constraints
Offloaded IoT traffic experiences delays consisting of access
delays from IoT device to the serving AP (or BS), network
delays if traffic is to be routed from the serving AP to the
AP where the edge server is hosted, and finally server delays
incurred at the edge server of the receiving application and
that constitutes queuing and processing delays. We assume
negligible access delays and focus on the network delays and
server delays. To guarantee delay requirements for each IoT
service provided by applications of type t, we constrain in
Eq.(15) the total delay experienced by the traffic to a given
target response time δt.

2dl,tn + dl,ts ≤ δt ∀l∈L
∀t∈T (15)

where dl,tn represents the network delays experienced by a
workload generated from location l requesting an application
of type t and assigned to an IoT application hosted in a remote
location, and is given by:

dl,tn =
∑
a∈A

∑
l′ 6=l

hl
′

l z
a
ltσ

l′

a
∀l∈L
∀t∈T (16)

dl,ts depicts the server delay that constitutes the queuing and
processing delays that the workload generated from location
l experiences at the edge server of the receiving application
of type t. As mentioned earlier, given the workload assigned
from various locations l′ to each application, we model an
application a as an M/M/1 queuing system with aggregate
request arrival rate of

∑
l′∈L z

a
l′tλ

t
l′ and service rate of pa

wt
,

where pa is the processing capacity in cycles per second
assigned to application a and wt is the average request size
in cycles. Therefore,

dl,ts =
∑
a∈A

zalt

(
1

pa

wt
−
∑

l′∈L z
a
l′tλ

t
l′

)
∀l∈L
∀t∈T (17)

Eq. (15) after some manipulation can be rewritten as:∑
a∈A

zalt
pa
wt
−
∑
a∈A

∑
l′∈L

zaltz
a
l′tλ

t
l′ ≥

1

δt − 2
∑

a∈A

∑
l′ 6=l h

l′
l z

a
ltσ

l′
a

∀l∈L
∀t∈T

(18)

To maintain a stable queue at the application, we force the
service rate to be greater than the arrival rate as per below:

pa
wt
−
∑
l′∈L

zal′tλ
t
l′ ≥ 0 ∀a∈A

∀t∈T (19)
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The above model is a mixed integer non-linear program.
Appendix A presents linearization of Eq.(7) and Eq.(18).

C. Complexity Analysis

The RPWA-MIP formulation is complex and the model is
clearly hard to solve even for a small network (Section VI). In
fact, the complexity of the RPWA problem can be highlighted
through the complexity of the different sub-problems it solves.
For instance, the MEC dimensioning and the IoT applications
placement sub-problems combined can be proven as NP-
Hard via a reduction from the capacitated facility location
problem [30] (known to be NP-Hard) where the facilities are
the edge servers to be deployed at locations l ∈ L and the
customers are the applications to place on the deployed edge
servers. Further, the NP-Hard generalized assignment problem
[31] can be reduced to the workload assignment sub-problem
where the workloads constitute the items that need to be
assigned to bins representing the IoT applications. Hence, the
workload assignment sub-problem is also NP-Hard. Thus, the
RPWA problem is NP-Hard as it combines three NP-Hard sub-
problems. Given its complexity, we present in the following
an efficient decomposition approach to solve it.

V. RPWA-D: A DECOMPOSITION APPROACH

As addressing the MEC dimensioning, the IoT applications
placement and the workload assignment sub-problems jointly
is challenging, we investigate the inter-dependency tightening
these three sub-problems together in the aim of exploring a
more efficient approach to solve them. Thus, we first notice
that the workload assignment sub-problem highly couples
the MEC dimensioning sub-problem and the IoT applications
placement sub-problem which makes it difficult to address
each of these three sub-problems independently. By inves-
tigating the workload assignment sub-problem, we observe
that the placement of the applications on edge servers has
a direct impact on the network delay experienced by the
workload assigned to the application. Further, the decision
on the computing resources to allocate to each application is
dependent on the size of the workload it will be processing and
affects the server delay of this latter. In fact, the response time
(δt) of the IoT service requested by the offloaded workloads is
to be met as per Eq.(15). Hence, we re-evaluate the response
time constraint in Eq.(15) given that it is a critical constraint
linking the three aforementioned sub-problems. Eq.(15) is
rewritten as follows:

dl,ts ≤ δt − 2dl,tn
∀l∈L
∀t∈T (20)

By substituting dl,ts given in Eq.(17) into Eq.(20), we obtain:∑
a∈A

zalt

(
1

pa

wt
−
∑

l′∈L z
a
l′tλ

t
l′

)
≤ δt − 2dl,tn

∀l∈L
∀t∈T (21)

From (21), we notice that if dl,tn is known, it will be easy to
decouple the workload assignment sub-problem from the IoT
applications placement and MEC dimensioning sub-problems
as the placement of the Iot applications and edge servers will

no longer affect the response time requirement (δt). To resolve
this, we assume a maximum network delay experienced by
the load (dmax

n = max (hl
′

l ), ∀l,l′∈L), to guarantee that any
obtained solution will meet the response time requirement.
Although this assumption simplifies the decomposition of our
problem, it may result in over-provisioning the edge servers as
it assumes that some loads incur higher network delays from
what they actually experience. Eq.(21) can then be rewritten
as follows:∑

a∈A

zalt

(
1

pa

wt
−
∑

l′∈L z
a
l′tλ

t
l′

)
≤ δ′t ∀l∈L

∀t∈T (22)

where δ′t = δt − 2dmax
n and represents the maximum server

delay allowed to meet the response time requirement. Eq.(22)
shows that given the maximum network delay, one can decide
on the computing resources pa to assign to each application
a as well as the workload mapped to this application. Deter-
mining the number of needed applications of the same type
and the computing resources (pa) to assign to each of those
applications based on a maximum server delay (δ′t), which
may be experienced by all workloads requesting the same
application type, simplifies the IoT applications placement
sub-problem to simply respecting the edge servers capacities.
In fact, the applications and the edge servers can then be placed
at any location without incurring any violation to the response
time requirement. Hence, since applications placement on edge
servers is dependent on the computing capacities of these edge
servers and their number, consequently, the total deployment
cost is affected. Thus, the MEC dimensioning sub-problem can
take care of the IoT applications placement, if fed with those to
be deployed under the objective of minimizing the deployment
cost. The workload assignment sub-problem can, hence, take
care of deciding on the number and the computing resources
to be assigned to the applications to deploy. Thus, the deci-
sions initially taken by the IoT applications placement sub-
problem are divided between the two other sub-problems (i.e.,
MEC dimensioning and workload assignment sub-problems).
Therefore, in the following, we decouple the RPWA problem
and decompose it into two different sub-problems:
1) The Delay Aware Load Assignment (DALA) sub-problem
that decides on the workload assignment to the IoT applica-
tions while determining the number of needed applications
and their computing resources with respect to the response
time requirement.
2) The Mobile Edge Servers Dimensioning (MESD) sub-
problem which determines the placement of the applications
and edge servers.

A. The Delay Aware Load Assignment (DALA)

Definition 2. Let G(N,E) denotes the network, Rt represents
the set of all workloads demanding the service of an IoT
application of type t (each r ∈ Rt denotes a load with rate
λr requests/sec for application of type t). Let At depicts the
set of all IoT applications of type t, maximize the fraction of
workloads that can be admitted to the network while determin-
ing the number of applications to be deployed in G(N,E) and
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the assignment of the admitted workloads to those applications
with respect to the response time requirement.

Network Inputs
At Set of applications of type t.
Rt Set of all workloads demanding the service of an application

of type t.
λr ∈ Z+ Arrival rate of requests of workload r ∈ Rt.
wt ∈ Z+ Average number of computing cycles demanded by one

request r ∈ Rt.
δ′t ∈ R+ Maximum tolerated server delay by an application of type t.

TABLE II: Parameters of the DALA-MIP.

We delineate in Table II the parameters used throughout our
formulation. The remaining ones are as defined in Table I. As
the main objective of the RPWA problem is to minimize the
deployment cost of edge servers, a possible objective for the
DALA sub-problem is to minimize the sum of computing re-
sources assigned to the applications to deploy, as it will reduce
the number of edge servers needed to host those applications
and hence, minimize the deployment cost. While this is a
possible objective and comes aligned with the definition of
the RPWA problem, it requires admitting all the workloads;
this might lead to infeasibility for the same instances which
are can be solved by the RPWA-MIP. This is because DALA
considers the maximum network delay (dmax

n ) when searching
for a solution, which tightens up the server delay (Eq.22) and
hence, the solution space. Thus, to obtain a solution for the
same instances of RPWA, we define DALA under the objective
of maximizing the fraction of the admitted workloads. Hence,
we define αr ∈ [0− 1] to depict the fraction of the load that
can be admitted to the network and we depict the objective of
DALA in Eq.(23).

Maximize
∑
r∈Rt

λrαr (23)

This objective is subject to several constraints, as elaborated
in the sequel. We introduce the decision variable ρa ∈ {0, 1}
to depict whether an application a ∈ At is assigned at least
one workload to process.

ρa =

{
1 if application a is used,
0 otherwise.

We define a new variable zar ∈ {0, 1} to specify whether a
workload r ∈ Rt is mapped to application a ∈ At as follows:

zar =

{
1 if workload r is mapped to application a,
0 otherwise.

In addition, we define pa ∈ R+ to depict the computing
resources to be allocated to application a ∈ At. An application
is used and should be deployed in the network if at least one
workload is mapped to it as specified in Eq.(24).

ρa ≥ zar ∀a∈At
∀r∈Rt

(24)

A workload r ∈ Rt can be mapped to and processed by exactly
one application as determined by Eq.(25).∑

a∈At

zar ≤ 1 ∀r∈Rt (25)

A workload r ∈ Rt should be processed by an application
a ∈ At that has enough computing resources to process it
without violating the server delay requirement as depicted in
Eq.(26).

drs ≤ δ′t ∀r∈Rt (26)

where drs represents the server delay (processing and queuing
delays) and is determined by (27).

drs =
∑
a∈At

zar

(
1

pa

w −
∑

r′∈Rt
zar′λr′αr′

)
∀r∈Rt (27)

Further, the queue of each application should remain stable.
That is, the average service rate of the IoT application a ∈ At

should be larger than the aggregate average arrival rates of all
workloads mapped to application a as given in Eq.(28).

pa
w
−
∑
r′∈Rt

zar′λr′αr′ > 0 ∀a∈At (28)

Finally, the computing resources assigned to an application
should be at least equal to its minimum required computing
capacity as depicted in Eq.(29) and at most equal to pmax

a

as specified in Eq.(30)

pa ≥ paminρ
a ∀a∈At (29)

pa ≤ pamaxρ
a ∀a∈At (30)

Eq.(23) and Eq.(26) are non linear and can be easily linearized
(Appendix B). We note that DALA is a MIP that can run in
multiple threads where each thread finds the solution for one
application type.

B. The Mobile Edge Servers Dimensioning (MESD)

Definition 3. Given a network G(N,E), a set A of IoT
applications and a set M of edge servers, determine the
number and the placement of edge servers in G(N,E), in
addition to the placement of the applications on the deployed
edge servers such that the total deployment cost is minimized.

Network Inputs

Ā Set of applications to deploy.
pa ∈ R+ Computing resources of application a ∈ A.

TABLE III: Parameters of the MESD-IP.

Table III presents the parameters used. The remaining
parameters are as defined in Table I. In order to formulate
the MESD sub-problem, we define the decision variable
xlm ∈ {0, 1} to specify whether the edge server m ∈ M is
deployed at location l ∈ L as follows:

xlm =

{
1 if edge server m is deployed at location l,
0 otherwise.

In addition, we introduce a decision variable yma ∈ {0, 1} to
indicate whether application a ∈ Ā is placed on edge server
m ∈M as follows:

yma =

{
1 if application a is placed on edge server m,
0 otherwise.
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The objective of the MESD sub-problem is to minimize the
deployment cost of the edge servers (Eq.(31)).

Minimize
∑
l∈L

∑
m∈M

xlm(πl + kcm) (31)

Subject to the following constraints. First, an edge server can
be placed on at most one location Eq.(32).∑

l∈L

xlm ≤ 1 ∀m ∈M (32)

Similarly, a location l ∈ L can host at most one edge server
m ∈M as depicted in Eq.(33).∑

m∈M

xlm ≤ 1 ∀l ∈ L (33)

In addition, an application can be deployed on exactly one
edge server as specified in Eq.(34).∑

m∈M

yma = 1 ∀a ∈ Ā (34)

Finally, Eq.(35) guarantees that the edge servers capacities are
not violated and that the applications are only hosted on placed
edge servers. ∑

a∈Ā

yma pa ≤ cm
∑
l∈L

xlm ∀m ∈M (35)

C. Decomposition Algorithm

We design and implement the RPWA decomposition solu-
tion (RPWA-D) to solve the RPWA problem. Our proposed
decomposition approach captures the collaboration between
the DALA and the MESD sub-problems. Thus, we depict
in Fig.2 a flowchart detailing the steps of RPWA-D. In fact,
RPWA-D accounts for the independency that exists between
the applications types. For instance, the assignment of the
workloads requesting the service provided by a specific type
of applications and the computing resources to be assigned to
those applications have no impact on the same decisions made
for any other type of applications. Hence, several instances of
the DALA-MIP are executed as parallel threads in order to
provide a workloads assignment and application computing
resources determination for each type of applications. Thus,
RPWA-D pre-processes the simulation data by categorizing it
by the type of application it is requesting. It then instantiate
a thread to execute the DALA-MIP for each application type.
Once the execution of all the DALA-MIP threads is final-
ized, their solutions are processed to capture the application
instances that need to be deployed on edge servers (i.e., the
application instances that were set as used by the DALA-MIP
threads (ρa = 1)), in addition to their assigned computing
resources (pa). Those latter are supplied to MESD-IP as
parameters. The MESD-IP is then executed in order to decide
on the number and the location of edge servers to place, in
addition to the placement of the applications which need to be
deployed. Thus, with the help of the DALA-MIP, the MESD-
IP provides the minimum edge servers deployment cost.

Pre-process simulation 

data

Solve DALA-MIP for 

applications of type 1

Solve DALA-MIP for 

applications of type t
...

Send parameters to each 

DALA-MIPs

Solve MESD-

IP

All DALA-

MIPs are 

solved?

YES

NO

Process DALA-

MIPs solutions

Fig. 2: Flowchart of RPWA-D.

VI. NUMERICAL EVALUATION

We conduct an extensive empirical study to evaluate the
performance of the RPWA-MIP against our decomposition ap-
proach (RPWA-D). We also explore the efficiency of RPWA-
D under varying parameters and study the trade-off between
the edge servers deployment cost and the percentage of the
workloads that can be admitted. Our numerical evaluation
is conducted using IBM ILOG CPLEX Optimization Studio
version 12.8.

A. Evaluation setup

In our tests, we consider networks of different sizes where
we vary the number of locations hosting APs/BSs (L) and the
number of edge servers that can be collocated to the existing
APs/BSs (M ). However, we consider that each edge server
m ∈ M has a computing capacity cm = 6GHz (unless
stated otherwise) and a deployment cost normalized to 8 units.
In addition, we perform our tests under different number of
available IoT applications (variable A) of 4 different types
(T = 4) that belong to the same industry vertical and hence,
may require the same QoS (i.e., response time). Thus, we
delineate in Table IV the different industry verticals accounted
for in our tests, and present the range of their required response
times in addition to the one used to set the value of δt. Note
that, we consider that each IoT application a ∈ A requires a
minimum processing capacity of pamin = 1.7GHz and can
consume up to pamax = 1.9GHz of computing resources.
We account for IoT devices scattered at different locations
within the considered network. Each of these IoT devices
is connected to an AP/BS available at its location and is
requesting the service of a determined type of application. We
evaluate variable arrival rates (variable λtl) of the IoT devices
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requests per second for different application types spread at
different locations of the network. However, we assume an
average of wt = 2 × 106 CPU cycles/request for a defined
application type t ∈ T .

Industry Vertical Allowable response
times (ms)

Applied response
time (δt) (ms)

Tactile Internet 1 - 10 5
Factory Automation 0.25 - 10 10
Smart Grids 3 - 20 20
Intelligent transportation Systems (ITS) 10 - 100 50
Tele Surgery ≤ 250 110

TABLE IV: QoS of different industry verticals [32], [33].

B. RPWA-MIP vs. RPWA-D

We first study the performance of RPWA-D and compare it
against RPWA-MIP in terms of optimality (e.g., deployment
cost) and scalability (e.g., execution time) as we vary the
number of locations in the network. In fact, increasing the
number of locations depicts an increase in the workloads
as more IoT devices requests originating from the added
locations are to be accounted for. Hence, we consider a
maximum of M = 10 edge servers and A = 4 applications
of T = 4 different types belonging to a factory automation
vertical (δt = 10ms) that can be deployed in the network.
In addition, we assume λtl = 60 requests/sec originating
from each location l ∈ L and requesting the service of an
application of type t ∈ T . The maximum network delay is
set to 4ms. Our results are presented in Table V.

Instance
< L,M, T,A >

RPWA-MIP RPWA-D
Cost
(units)

Execution
Time (ms)

Cost
(units)

Execution
Time (ms)

Load admit-
ted (%)

L=5, M=10, T=4, A=4 16 69 16 57 100
L=7, M=10, T=4, A=4 16 90 16 60 100
L=15, M=10, T=4, A=4 - - 16 90 50
L=15, M=10, T=4, A=12 - 2days+ 32 661 100

TABLE V: Evaluation of RPWA-MIP vs. RPWA-D.

1) Optimality Gap: Table V depicts that for a small number
of locations (L = 5 and L = 7), RPWA-D is able to provide
the optimal cost of 16 units supplied by RPWA-MIP while
admitting all the workloads. Note that, this cost remained
constant for L = 5 and L = 7 given that the deployed edge
servers when L = 5 had enough free computing resources
to accommodate the additional applications needed to handle
the extra workloads generated from the two added locations
(when L = 7). In other words, no extra edge servers were
needed to be deployed. As we increase the number of
locations to L = 15, RPWA-MIP fails to give a feasible
solution as it is constrained by admitting all the generated
workloads and the fixed number of applications (A = 4) that
can be deployed. However, RPWA-D admitted 50% of the
workload with a cost of 16 units. As A = 4 applications
were not sufficient for RPWA-MIP to provide a solution, we
performed a final test where we increased the number of
applications from A = 4 to A = 12 for the same number of
locations (e.g., L = 15). However, this resulted in a large
increase of the size of the problem and RPWA-MIP failed
to give a solution even after 2 days of execution. However,
RPWA-D was able to admit all the loads.

2) Execution Time: In order to evaluate the scalability
of the proposed methods, we delineates in Table V the
execution time of RPWA-MIP and RPWA-D. As the size of
the problem increases with the increase of the number of
locations and the number of applications, finding a solution
for the problem becomes more challenging, and hence, the
runtime of both methods increases exponentially. However,
Table V clearly shows that the increase of the runtime of
RPWA-D is at a slower pace than that of RPWA-MIP and
remains in the order of milliseconds (661 ms) while the
runtime of RPWA-MIP exceeded the 2 days without providing
a solution (L = 15 and A = 12). This proves that RPWA-D
is much more scalable than RPWA-MIP.

C. Evaluation of RPWA-D

Given the non-scalability of RPWA-MIP, we focus in
the following on studying the impact of varying network
parameters on the deployment cost using RPWA-D while
highlighting several trade-offs existing between the evaluated
system parameters. Thus, unless stated otherwise, we consider
a network consisting of L = 10 different locations, and a
maximum of M = 5 edge servers that can be deployed in it.
The maximum network delay is set to 1.5ms.
1) Impact of varying the number of IoT applications for
different industry verticals: We first investigate the impact of
varying the number of available applications on the admitted
workloads given IoT services belonging to different industry
verticals [18], [19]. Thus, we consider four application types
(T = 4) for each of the industry verticals depicted in Table
IV and represented by their maximum allowable response
time (5ms ≤ δt ≤ 110ms). We evaluate the percentage of
admitted workload for each of them as we vary the maximum
number of applications that can be deployed in the network
(4 ≤ A ≤ 12). Fig.3 illustrates an increase of the percentage
of admitted workload with the increase of the number of
applications. For instance, when considering Tactile Internet
(δ = 5ms), the admitted workload almost doubled when
the number of applications went from A = 4 to A = 8.
Similar observation can be deducted for the other presented
types of industry verticals. This infers that, even though
enough edge servers computing resources are available, a
low number of applications was not able to admit all the
workloads even when all the applications are deployed and
assigned the maximum processing resources they can acquire
(pamax). This shows that the maximum computing resources
allocated to each application is not enough to meet the
required QoS (response time), if assigned more workloads.
In fact, an increase of the server delay will be observed with
the increase in the workloads assigned to an application.
Furthermore, Fig.3 depicts that when the response time
increases (e.g., considering all the industry verticals), the
percentage of admitted workload increases for a fixed number
of applications. For instance, when A = 12, IoT applications
utilizing Tactile Internet (δt = 5ms) admitted 57.4% of the
generated workloads while those used for factory automation
(δt = 10ms) were able to admit 94.3%. This trend continues
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as the response time increases to reach 100% of admission
with the applications employed for Tele-Surgery. This can be
explained by the fact that when the response time is relaxed,
the workloads can tolerate higher queuing and processing
delays which allows the applications to be able to meet the
QoS requirement for a bigger fraction of their assigned load.

Fig. 3: Admission rate under varying number of applications.

2) Impact of varying workloads for different industry
verticals: We evaluate the impact of the workload increase
on the admission rate for different industry verticals. Thus,
we consider A = 12 applications that can be deployed in the
network and we vary the workload by varying the value of
205 requests/sec ≤ λtl ≤ 265 requests/sec. Fig.4 depicts that
as the generated workloads per location per type increase for
a given industry vertical, the percentage of admitted ones
decreases, given that more workloads will be contending for
the same computing resources (applications), which are not
sufficient to serve all of them while meeting the required
response time, since they will be experiencing higher queuing
delay. However, this increased queuing delay can be tolerated
if the response time increased. More precisely, one can note
that as the workload for smart grid applications increased
by 22.6% (from 205 requests/sec to 265 requests/sec), the
admitted workload decreased by 6.4% showing that when all
the computing resources (applications) are being consumed,
the network fails to cope with the increased workloads
and hence, less load is admitted. Further, when λtl = 265
requests/sec, the admission rate increases with the increase
of the response time to reach 95.5% for less latency sensitive
applications such as those used in Tele-surgery.
3) Impact of varying the network size: We consider a factory
automation industry where the allowed response time of its
application is fixed to δt = 10ms. We evaluate the trade-off
existing between the number of locations and the number of
applications in a network where at most M = 5 edge servers
can be deployed. We account for λtl = 235 requests/sec
generated from each location for each of the T = 4 types of
available applications.
Fig. 5 demonstrates that for the same number of applications,
the admission rate decreases with the increase of the number
of locations. This is explained by the fact that as the
network size increases, more workloads are generated from

Fig. 4: Admission rate under varying workloads.
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Fig. 5: Admitted rate over varying number of locations and
applications.

the additional locations making the existing applications
experience more congestion which leads to having their
allocated computing resources fall short in serving the
additional workloads within the allowed delay. However, as
the number of applications increases (for a specific number
of locations), more computing resources become available to
process the additional workloads which explains the increase
in the admission rate.
4) Impact of varying the generated workloads and
applications: Under the same simulation setup mentioned in
the previous test (Section VI-C(3)), we provide a large scale
test in order to demonstrate the feasibility of the RPWA-D
approach. Thus, we increase the workload size for each type
of application generated from every location by varying the
value of λtl between 150 requests/sec and 550 requests/sec. As
we consider L = 10 locations and T = 4 types of applications,
the total workload generated from all locations targeting
all application types varied between 6000 requests/sec
and 22000 requests/sec. In this test scenario, We vary
the number of applications that can be placed on edge
servers from A = 4 to A = 12 to study its impact on the
admission rate. Fig. 6 illustrates that for the same number of
applications, the admission rate decreases with the increase
of the generated workload. This can be interpreted that the
provisioned processing capacities for a given number of
applications cannot accommodate growing workload demand
unless more resources are made available. As such, we can
note that when the number of applications increases, the
admission rate increases for the same amount of workload λtl .
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Fig. 6: Admission rate over varying workload and applications.

5) Impact of varying the edge servers capacities: We
explore the relation between the edge servers capacities and
the network utilization for different generated workloads.
The network utilization is defined as the ratio between the
total computing resources used by the deployed applications∑

a∈A pa and the total computing capacity available by the
deployed edge servers

∑
m∈M cm (

∑
a∈A pa∑

m∈M cm
). Hence, we

consider a factory automation industry (δt = 10ms) of L = 10
locations, M = 5 edge servers that can be deployed to host
up to A = 12 applications of T = 4 different types. Fig.7
depicts the percentage of network utilization as we increase
the capacities of the edge servers (4Ghz ≤ cm ≤ 6.8GHz) and
arrival rates of the requests (λtl ∈ {150, 200} requests/sec).

Fig. 7: Network utilization under variable MEC capacities.

Fig.7 delineates that 0% of the network resources are utilized
when cm ∈ {4, 4.7} GHz and λtl ∈ {150, 200} requests/sec
as RPWA-D fails to give a feasible solution since the total
computing resources specified by the DALA-MIP and required
to process the maximum amount of workload exceed those
offered by all the edge servers that can be placed by the
MESD-IP. The same behavior is observed when cm = 5.4GHz
and λtl = 200 requests/sec. However, for a lower arrival rate
of λtl = 150 requests/sec, the network was fully utilized as
the total computing resources provided by the edge servers
were just enough to accommodate all the required applications
determined by the DALA-MIP. As the value of cm continues
to increase, we observe that the network utilization decreases
given that

∑
a∈A pa stabilized once all the workload is admit-

ted and
∑

m∈M cm increases.
6) Deployment cost evaluation under varying network delay:
We evaluate the impact of the increase of the maximum
network delay on the edge servers deployment cost. Thus,
we consider a smart grid system (δt = 20ms) of L = 10
locations, M = 10 edge servers of varying configurations of
computing capacity cm ∈ {3, 5, 7, 9, 11} GHz. We vary the
setup cost between πl ∈ [5 − 20] unit cost and we set the
cost of 1Ghz to be k = 1 unit cost. We consider A = 20
applications of T = 4 different types to process a workload
generated at an arrival rate of λtl = 400 requests/sec and vary
the maximum network delay between 2ms and 10ms.
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Fig. 8: Deployment cost under varying network delays.

In fact, increasing the network delay leads to very strict delay
limit at the edge server to completely process requests by the
hosted applications. As a result, more computing resources are
required to be allocated to the applications when increased
network delays are considered. Given that each of these
applications has an upper bound on the maximum computing
resources it can be assigned (pamax), more applications will be
needed to process all the workload. This will require deploying
more edge servers to be able to host these applications, which
will eventually increase the deployment cost as shown in Fig.8.
Note that, for a network delay of 10ms, no solution was
found as the maximum server delay remaining to process
the workload within the response time is 0ms (δ′t = δt −
2dmax

n = 20− 2 ∗ 10 = 0ms) (Section V). This, in fact, shows
the importance of MEC in responding to the delay sensitive
requirements of new emerging services.
7) Deployment cost evaluation under varying workload: Fi-
nally, we evaluate the impact of the increase of the generated
workload on the deployment cost. We consider the same
simulation setup described in Section VI-C (6) and we vary
the workload arrival rate λtl ∈ [250− 650] requests/sec. Our
results depicted in Fig.9 show that the deployment cost in-
creases with the increase of the workload as more edge servers
need to be provisioned to handle such increase. However, one
can note that the deployment cost remains the same for a
load of 450, 550 and 650 requests/sec. With a more detailed
evaluation of the cause of such result, we noticed that for all
the aforementioned generated workloads, the total amount of
admitted load remained stable at 17820 requests/sec with a
deployment of all the A = 20 applications which explains
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that the number of available applications and the maximum
processing capacity pmax they can be allocated limited the
admission rate which stabilized the deployment cost.
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Fig. 9: Deployment cost under varying workload.

D. Comparison of RPWA-D with existing work

As mentioned earlier, we are not aware of any existing
literature that addressed the joint problem of MEC dimen-
sioning, IoT application placement, and workload assignment.
Moreover, most of the existing work did not account for
various types of applications. As a result and to evaluate the
efficiency of our proposed decomposition approach RPWA-
D, we consider only one type of applications (T = 1) and
compare against the work in [17] that addressed the placement
of cloudlets (edge servers) and user (load) assignment in a
Wireless Metropolitan Area Network WMAN. In order to
apply their Density Based Clustering solution to our work, we
use M/M/1 queue as the cloudlet model and assign deadlines
to users’ requests. Fig. 10 shows the simulation results of our
proposed approach (RPWA-D) against the method proposed in
[17] and referred to as DBC. Our simulation setup consists of
M = 5 edge servers and L = 10 locations. We account for 150
users, each generating requests within the range of [50− 100]
requests/sec. The value for λtl in RPWA-D is calculated based
on the total number of user requests generated from location
l in the DBC algorithm. Our test regroups different vertical
industries with varying response times {5, 10, 20, 50, 110}ms.

As illustrated in Fig.10, using our proposed scheme RPWA-
D, the admission rate can be increased by approximately 13%,
44%, 16%, 6% and 1% than the DBC algorithm for each of the
presented vertical industries respectively. This is explained by
the fact that DBC places cloudlets (edge servers) based on the
most dense locations while in our approach an optimal edge
servers placement is obtained. Further, in the DBC approach,
a workload is either admitted or rejected completely, while,
our approach allows a fraction of the load generated from one
location to be admitted leading to more efficient and flexible
workload assignment.

VII. CONCLUSION

In this paper, we studied the RPWA problem that jointly
solves the MEC dimensioning, IoT applications placement
and workload assignment sub-problems. To the best of our

 Admitted Load (%) vs. Deadline

5 10 20 50 110
Deadline (ms)

0

10

20

30

40

50

60

70

80

90

100

 A
d

m
it

te
d

 L
o

ad
 (

%
)

DBC
RPWA-D

Fig. 10: Admitted rate over varying deadline.

knowledge, this is the first work to address the three aforemen-
tioned sub-problems jointly. We mathematically formulated
the RPWA problem as a MIP with the objective of minimizing
the deployment cost while respecting the IoT applications’
maximum allowable response times. Given the showed NP-
Hardness of RPWA and the non scalability of the RPWA-
MIP, we presented a decomposition approach (RPWA-D) to
efficiently solve it. Unlike RPWA-MIP that considers admit-
ting all the workloads, RPWA-D studies the percentage of the
workloads that can be admitted given the available computing
resources. Hence, RPWA-D can be used to study the trade-off
between the increase of the workload admission rate and the
extra computing resources needed to process the additional
workload. Through extensive simulations, we verified the
efficiency of RPWA-D under varying parameters and network
conditions. Our proposed decomposition approach serves as a
tool for network operators to develop cost effective strategies
for edge network planning and design.

APPENDIX

A. Linearization of RPWA-MIP constraints

Linearization of Eq.(7)
Eq.(7) is non linear and can be linearized by declaring a new
decision variable θlma ∈ R+ such that:

θlma = pay
lm
a

∀l∈L
∀m∈M
∀a∈A

(36)

Eq.(7) can then be replaced by the following equations:∑
l∈L

∑
a∈A

θlma ≤ cm ∀m ∈M (37)

θlma ≤ Hylma
∀l∈L

∀m∈M
∀a∈A

(38)

θlma ≤ pa
∀l∈L

∀m∈M
∀a∈A

(39)

θlma ≥ pa − (1− ylma )H
∀l∈L

∀m∈M
∀a∈A

(40)
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θlma ≥ 0
∀l∈L

∀m∈M
∀a∈A

(41)

Where H = pamax Linarization of Eq.(18)
The total delay in Eq.(18) is given by:

2
∑
a∈A

∑
l′ 6=l

hl
′

l z
a
ltσ

l′

a +

∑
a∈A

zalt

(
1

pa

wt
−
∑

l′′∈L z
a
l′′tλ

t
l′′

)
≤ δt ∀l∈L

∀t∈T

(42)

Eq.(42) is non linear and can be linearized by declaring a new
decision variable ζalt such that:

ζalt ≥ zalt

(
1

pa

wt
−
∑

l′′∈L z
a
l′′tλ

t
l′′

)
∀l∈L
∀a∈A
∀t∈T

(43)

Hence, Eq.(42) becomes:

2
∑
a∈A

∑
l′ 6=l

hl
′

l z
a
ltσ

l′

a︸ ︷︷ ︸
dlt
n

+
∑
a∈A

ζalt︸ ︷︷ ︸
dlt
s

≤ δt ∀l∈L
∀t∈T (44)

Eq.(44) is non linear and can be linearized by declaring a new
decision variable ψal′

lt ∈ {0, 1} such that:

ψal′

lt = zaltσ
l′

a

∀l,l′∈L
∀t∈T
∀a∈A

(45)

Eq.(44) can then be replaced by the following equations:

2
∑
a∈A

∑
l′ 6=l

hl
′

l ψ
al′

lt︸ ︷︷ ︸
dlt
n

+
∑
a∈A

ζalt︸ ︷︷ ︸
dlt
s

≤ δt ∀l∈L
∀t∈T (46)

ψal′

lt ≤ zalt
∀l,l′∈L
∀t∈T
∀a∈A

(47)

ψal′

lt ≤ σl′

a

∀l,l′∈L
∀t∈T
∀a∈A

(48)

ψal′

lt ≥ zalt + σl′

a − 1
∀l,l′∈L
∀t∈T
∀a∈A

(49)

Eq.(43) is non linear and can be linearized by rewriting it as:

ζalt
pa
wt
−
∑
l′′∈L

ζaltz
a
l′′tλ

t
l′′ ≥ zalt

∀l∈L
∀a∈A
∀t∈T

(50)

and then declaring a new decision variable βal′′

lt such that:

βal′′

lt = ζaltz
a
l′′t

∀l,l′′∈L
∀t∈T
∀a∈A

(51)

Hence, Eq.(50) can be replaced by the following:

ζalt
pa
wt
−
∑
l′′∈L

βal′′

lt λtl′′ ≥ zalt
∀l∈L
∀a∈A
∀t∈T

(52)

βal′′

lt ≤ Hzal′′t
∀l,l′∈L
∀t∈T
∀a∈A

(53)

βal′′′

lt ≤ ζalt
∀l,l′∈L
∀t∈T
∀a∈A

(54)

βal′′

lt ≥ ζalt − (1− zal′′t)H
∀l,l′∈L
∀t∈T
∀a∈A

(55)

βal′′

lt ≥ 0
∀l,l′∈L
∀t∈T
∀a∈A

(56)

Where H is a big integer number.
Eq.(52) is still non linear and can be linearized using the Mc-
Cormick envelopes method. This method involves introducing
a new decision variable γalt such that:

γalt = ζaltpa
∀l∈L
∀t∈T
∀a∈A

(57)

In addition, since ζalt and pa are bounded by:

∵ 0 ≤ ζalt ≤
H

pamin

(58)

∵ 0 ≤ pa ≤ pamax (59)

Thus, Eq.(52) can be replaced with the following equations:

γalt
wt
−
∑
l′′∈L

βal′′

lt λtl′′ ≥ zalt
∀l∈L
∀a∈A
∀t∈T

(60)

γalt ≥ 0
∀l∈L
∀a∈A
∀t∈T

(61)

γalt ≥
H

pamin

pa + ζaltp
a
max −

H

pamin

pamax

∀l∈L
∀a∈A
∀t∈T

(62)

γalt ≤
H

pamin

pa
∀l∈L
∀a∈A
∀t∈T

(63)

γalt ≤ ζaltpamax

∀l∈L
∀a∈A
∀t∈T

(64)

B. Linearization of DALA-MIP constraints

Linearization of Eq.(26)
Eq.(26) is non linear and can be rewritten as in Eq.(65)∑

a∈At

zar
pa
w
−
∑
a∈At

∑
r′∈Rt

zar z
a
r′λr′αr′ ≥

1

δ′
∀r ∈ Rt (65)

Eq.(65) can the be linearized by declaring three new decision
variables: νar ∈ R+ such that:

νar = zar pa
∀a∈At
∀r∈Rt

(66)

and τarr′ ∈ {0, 1} such that;

τarr′ = zar z
a
r′

∀a∈At

∀r,r′∈Rt
(67)

γarr′ ∈ [0− 1] such that:

γarr′ = τarr′α
′
r

∀a∈At

∀r,r′∈Rt
(68)

Eq.(65) can then be replaced by the following equations:

νar ≤ zar pamax
∀a∈At
∀r∈Rt

(69)

νar ≤ pa ∀a∈At
∀r∈Rt

(70)

νar ≥ pa − pamax(1− zar ) ∀a∈At
∀r∈Rt

(71)

τarr′ ≤ zar
∀a∈At

∀r,r′∈Rt
(72)

τarr′ ≤ zar′
∀a∈At

∀r,r′∈Rt
(73)

τarr′ ≥ zar + zar′ − 1 ∀a∈At

∀r,r′∈Rt
(74)

γarr′ ≤ τarr′
∀a∈At

∀r,r′∈Rt
(75)

γarr′ ≤ αr
∀a∈At

∀r,r′∈Rt
(76)
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γarr′ ≥ αr − (1− τarr′)
∀a∈At

∀r,r′∈Rt
(77)∑

a∈At

νar
w
−
∑
a∈At

∑
r′∈Rt

γarr′λr′ ≥
1

δ′
∀r ∈ Rt (78)

Linearization of Eq.(28)
Eq.(28) is non linear and can be linearized by declaring new
decision variable xar ∈ [0, 1] such that:

xar = zarαr
∀a∈At
∀r∈Rt

(79)

Eq.(28) can then be replaced by the following equations:

xar ≤ zar ∀a∈At
∀r∈Rt

(80)

xar ≤ αa
∀a∈At
∀r∈Rt

(81)

xar ≥ αr − (1− zar ) ∀a∈At
∀r∈Rt

(82)

pa
w
−
∑
r∈Rt

xarλr > 0 ∀a ∈ At (83)
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