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ABSTRACT 
 

 
Pga1 

A GPI-ANCHORED CELL WALL PROTEIN 
NECESSARY FOR ADHESION AND BIOFILM 

FORMATION IN CANDIDA ALBICANS 
 

by 
 

Rami A. Hashash 
 

 

The human fungal pathogen Candida albicans is one of the leading causative agents 

of death in immunocompromised individuals. Many factors have been implicated in 

virulence including filamentation inducing transcription factors, adhesins, lipases, 

and proteases. Many of these factors are GlycosylPhosphatidylInositol (GPI)-

anchored cell surface antigenic determinant proteins. Pga1 is a short 133 amino 

acid protein shown to be up regulated during cell wall regeneration. The purpose of 

this study is to characterize the role of Pga1 as far as filamentation on solid and 

liquid filamentation and non-filamentation inducing media, susceptibility to cell 

surface disrupting agents, oxidative stress to a potentially lethal dose of hydrogen 

peroxide. Furthermore, virulence in a mouse model of disseminated candidiasis, 

adhesion to human epithelial cells and biofilm formation will be characterized. This 

will be performed by creating a homozygous pga1 null strain and comparing the 
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phenotype to the parental strain. It was observed that the null phenotype was over 

filamentous on both liquid and solid potato dextrose agar (PDA) media compared 

to the parental strain at both 300C and 370C. In addition the mutant strain showed 

less oxidative stress tolerance. The mutant exhibited reduced susceptibility to 

sodium dodecyl sulfate (SDS), but increased susceptibility to calcofluor white, both 

being cell surface disrupting agents. However, no differences in response to Congo 

red or caspofungin were observed. Furthermore the mutant exhibited a 50% 

reduction in adhesion and a 33% reduction in biofilm formation compared to the 

parental strain, which was reflected as a reduction in virulence. This data is 

interesting; bearing in mind that disruption of many cell surface components 

usually weakens the cell wall, resulting in hypersensitivity to the utilized agents and 

a reduction in filamentation. Whether the cell compensates a pga1 deletion and 

responds by up regulating other cell surface components is possible. 
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Chapter 1 
 

 

Introduction 
 

Candida albicans, the major opportunistic fungal pathogen of humans (Figure 1), 

commensally colonizes virtually every anatomical site of the host from the oral 

cavity to the gastrointestinal and urogenital tracts, generating no obvious 

pathology. 

However C. albicans can turn pathogenic. In fact, Candida species are the fourth 

leading cause of catheter-related bloodstream infections in hospitalized patients 

in intensive care units, and C. albicans is the species most commonly isolated 

from patients with these infections. Candida species are associated with severe 

and deadly systemic bloodstream infections with a high mortality rate (31.8%) in 

neutropenic patients (Chen et al., 2008) and with an attributive mortality rate 

approaching 35% in the United States. Approximately, $1 billion per year is 

spent on antifungal treatments for patients with hospital-acquired Candida 

infections in the US (Kadosh et al., 2005; Banerjee et al., 2008). 

Importantly, C. albicans can cause superficial as well as disseminated infections 

when changes in the host immune system or microflora arise. Clearly the 

immune status of the host strongly influences the ability of C. albicans to cause 

disease. In immunocompromised, individuals including those undergoing bone 

marrow and organ transplantation, cancer chemotherapy and those with primary 

or acquired immunodeficiency, C. albicans can cause life-threatening infections 

(Odds 1988; Tsao et al., 2009) that may arise as hematogenously disseminated 

infections or as localized primary diseases of deep organs (Plaine et al., 2008). C. 

albicans can establish bloodstream infections that can progress to deep-seated 
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infections (Figure 1) of major organs such as the kidney, liver and brain, many 

of which are fatal (Walker et al., 2009). Predisposing factors for C. albicans 

infections include immunosuppressive therapy, antibiotic therapy, human 

immunodeficiency virus infection, diabetes, and old age. 

 

Figure 1. Candida albicans in different forms.   

The non invasive yeast form is the major commensal form present in warm blooded 

animals. The filamentous form is necessary for tissue and organ invasion 

(www.overcomingcandida.com). 

 

The number of clinical C. albicans infections worldwide has risen considerably in 

recent years, and the incidence of resistance to traditional antifungal therapies is 

also rising. Many existing antifungal therapies have clinical side effects; therefore 

new strategies are needed to identify new targets for antifungal therapy (Cao et 

al., 2009).  
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1.1 Candida albicans dimorphism 

Candida albicans is a diploid asexual pleiomorphic fungus. It possesses several 

virulence properties including the ability to undergo a reversible morphological 

conversion from single ovoid budding yeast cells (blastospores) to elongated 

cells attached end-to-end (filaments) that are known to occur in two distinct 

forms: pseudohyphae and true hyphae (Figure 2). Pseudohyphal cells are 

elliptical in shape with constrictions at the septa, whereas hyphal cells have 

parallel sides showing a relatively uniform width and true septa lacking 

constrictions. Tissues infected with C. albicans typically contain a mixture of 

blastospores, pseudohyphae, and hyphae.  

 

 
Figure 2. Candida from yeast to invasive forms 

Dimorphic switching results in hyphal branching with an intermediate pseudohyphal 

form (www.overcomingcandida.com). A. Budding yeast, B. Hyphae, C. Pseudohyphae. 
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In addition, C. albicans has a special ability to form chlamydospores, thick-walled 

cells, in certain environmental conditions such as nutrient-poor media, and low 

temperature (25°C to 30°C) where light and presence of glucose inhibit its 

formation. Chlamydospores arise on elongated suspensor cells situated on 

pseudohyphae or hyphae (Figure 3). The physiological significance of 

chlamydospores is not completely understood but they have been isolated from 

AIDS patients (Sonneborn et al., 1999).  

 

 

  
 

Figure 3. Candida albicans exhibiting chlamydospore formation.  

Microscopic image (200-fold magnification) of Candida albicans ATCC 10231, grown on 

cornmeal agar medium with 1% Tween80. (Tambe, 2005) 
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1.2 Dimorphism and virulence 

C. albicans blastospore-to-filament transition is required for virulence. One of the 

features that allow for these transitions (Figure 4) from a commensal organism 

to a successful pathogen is its ability to sense complex environmental signals 

(Tsao et al., 2009). These signals relate to medium pH, nutrient type and 

availability, temperature, and concentration of atmospheric gases. In fact under 

a combination of conditions that include normal to slightly alkaline pH, host 

body temperature (370C), physiological concentration of CO2 (5%), hypoxia, 

presence of N-acetylglucosamine, serum, nutrient limitation and starvation 

especially glucose starvation, growth on certain synthetic cell culture media such 

as M199 pH7 or cornmeal agar, C. albicans has the ability to switch en masse  from 

yeast to hyphae and eventually from a commensal to a pathogen, to induce cell 

proliferation signaling pathways and to induce the expression of virulence 

determinants (Calderone, 2002).  

At 370C and in serum, the most potent hyphal inducer, C. albicans initially form 

small projections termed germ tubes. Germ tubes are precursors of hyphal 

filaments and are actually used as a diagnostic tool in the identification of C. 

albicans. Subsequent cell division at the apical tip of the germ tube allows 

extended filament formation (Banerjee et al., 2008). 

 
Figure 4. The basic bud-hypha transition in C. albicans.  

A) Yeast form cells. B) Germ tube extension, a precursor to hyphal formation.  

Note the bud scars on the mother cell. (Soll 2002) 
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This morphological switching is triggered through multiple signal transduction 

pathways that ultimately results in the activation of a complex transcriptional 

program resulting in filament formation. Filamentation has been long known to 

be coupled with virulence and pathogenesis in C. albicans as well as several other 

pathogenic fungi. A clear correlation between extensive invasion of oral 

epithelial mucosal surfaces and increased number of hyphal filaments is 

observed. Indeed, epithelial tissue invasion is believed to be caused by the 

mechanical force exerted by hyphal extension. C. albicans hyphal filament 

extension is critical for the process of thigmotropism that guides the hyphal 

growth along ridges of the substratum, which is believed to be an adaptation for 

tissue invasion, in addition  to the ability of C. albicans to breach endothelial cells 

and lyse macrophages and neutrophils when endocytosed (Banerjee et al., 2008). 

The blastospore-filament transition is accompanied by the induction of many 

genes. While some of these genes are required for the morphological transition, 

others encode proteins that give the filamentous forms their distinctive 

properties. The fact that filamentation is necessary for virulence comes from 

many observations. First, deletion of key filamentation inducing genes such as 

cph1 and efg1 blocks filamentation under most growth conditions and result in an 

avirulent phenotype. Second, filamentous forms of C. albicans have been isolated 

from patients suffering from systemic candidosis. However this relationship 

between filamentation and virulence is not absolute. For example, the three 

major characterized negative regulators of filamentation under non-inducing 

conditions are Rfg1, Nrg1, and Tup1. In the well-studied baker’s yeast, 

Saccharomyces cerevisiae, Nrg1 and Rox1-a protein similar to Rfg1 in structure, are 

sequence-specific DNA-binding proteins that recruit Tup1, a global 

transcriptional repressor to achieve gene silencing.  Deletion of rfg1, tup1, or 

even nrg1 result in lack of repression of filamentation genes and result in a 

constitutively filamentous strain under most media tested. Interestingly and 
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surprisingly, such strains are highly attenuated for virulence. Thus filamentation 

alone is not sufficient for virulence. It appears that the ability of C. albicans to 

switch between the blastospore and hyphal morphologies is necessary for 

virulence (Kadosh et al., 2005). 

 

1.3 Biofilm formation 

Transplantation procedures, the use of chronic indwelling devices, and 

prolonged intensive care unit stays have increased the prevalence of fungal 

disease. Substrates for biofilm growth associated with candidiasis include 

indwelling medical devices such as artificial joints, catheters, central nervous 

system shunts, dental implants, heart valves, ocular lenses, and vascular bypass 

grafts (Hawser and Douglas, 1994). 

Biofilm formation proceeds in three distinct developmental phases: early (0 hr 

to 11 hr), intermediate (12 hr to 30 hr), and maturation (38 hr to 72 hr). Initially 

(0 to 2 hr), the majority of cells present are blastospores adhering to the surface. 

At 3 to 4 hr, distinct microcolonies start to appear and eventually form 

communities of thick tracks of fungal growth after 11 hr due to increased cell 

growth and aggregation along areas of surface irregularities. During the 

maturation phase, the amount of extracellular material (ECM) increases with 

incubation time, until C. albicans communities were completely encased within 

this material. Fungal communities and the extracellular material in which they 

are embedded constitute the biofilm (Figure 5). Filamentous hyphal cells are 

major constituents of biofilm. Antifungal resistance of biofilm-grown cells 

increases in conjunction with biofilm formation. This is observed when 

Minimum Inhibitory Concentrations (MICs) of certain anti-fungal drugs 

progressively increase as the biofilms develop and grow to maturation (Chandra 

et al., 2001). 
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Figure 5. Candida albicans biofilm after 24 hours of development.  

Catheter wall and intraluminal biofilm in an end-on orientation is shown. A) Yeast 

adherence to surface B) Biofilm formation after 24 hr. (Andes et al., 2004) 
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1.4 The fungal cell wall 

In fungi, the cell wall is a dynamic structure that is essential for maintaining the 

osmotic balance of the cell, for creating and maintaining its shape during 

morphogenesis and providing it with protection from environmental stresses. In 

addition, in pathogenic fungi, the cell wall and especially cell wall proteins are 

known to play a key role in the relationship between the fungal cell and the host, 

contributing to host tissue adhesion and to immune response modulation 

(Plaine et al., 2008). 

C. albicans cell wall (Figure 6) is a network composed predominantly of ß-1,3-

linked glucan (50%), containing some ß-1,6-glucan branches (5%) that bind 

mannoproteins (Santos et al., 2000). The inner layer, containing chitin (10%), 

determines the shape and maintains stability of the cell, while the outer 

mannoprotein layer (40%) provide antigenic determinants and limit permeability 

(Chaffin et al., 1998; Eckert et al., 2007).  

 
Figure 6. Schematic representation of major cell wall components.  

The cell wall is external to the cell membrane (shown in black and white at the bottom). 

Labeled symbols: red rectangles, GlycosylPhosphatidylInositol cell wall proteins (GPI-

CWPs); yellow hexagons, Proteins with Internal Repeats (PIR).  

Unlabeled symbols: dark blue lines, ß-1,3-glucan; medium blue lines, ß-1,6-glucan; light 

blue lines, chitin; maroon circles, phosphomannolipid; green circles, unattached 

proteins found in the cell wall or in the medium (Chaffin W. L., 2008). 
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 The major class of cell wall proteins has the sequence features of 

GlycosylPhosphatidylInositol (GPI)-anchored proteins, including an N-terminal 

signal sequence and a C-terminus containing a GPI anchor attachment site (x-

site). GPI anchored proteins (GpiPs) are linked to the plasma membrane via a 

preformed GPI anchor that is added to the protein in the endoplasmic 

reticulum by a transamidase enzyme complex that removes the GPI anchor 

signal (Figure 7). Furthermore, most GPI anchored proteins are heavily 

glycosylated. In some fungi, several results suggest that a subset of GpiPs are 

cleaved from the membrane and translocated to the cell wall where they are 

linked covalently to ß-1,6-glucan. 

 
 

Figure 7. Features of GPI-anchored proteins and their processing by GPI 

transamidase. 

GPI-anchored proteins have an amino-terminal signal peptide and a carboxy-terminal 

GPI-addition signal peptide (top) that is removed and directly replaced by a GPI 

precursor (bottom). 
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By comparing in silico predicted GpiPs reported in a number of studies, there is 

an estimate of 115 putative GpiPs in the C. albicans genome; almost twice as 

many putative GpiPs as in S. cerevisiae. As cell surface components, most are 

thought to be antigenic determinant proteins and virulence factors. To date, 

around 70 of them have been partially characterized by the generation of null 

mutants. Of these, 15 have been tested for virulence and 12 have shown a 

virulence defect in a mouse model of systemic infection (Plaine et al., 2008). 

Several functions are attributed to GPI proteins depending on the organism. 

Scanning the C. albicans genome at www.candidagenome.org  revealed that no 

less than 65 of these 115 GPI anchored proteins are termed “PGA” (Predicted 

GPI Anchor). These proteins are not necessarily related in function or structure. 

They are grouped simply because they all share an N-terminal signal sequence 

and a C-terminal GPI anchor attachment site (Richard and Plaine, 2007). 

In characterization of cell wall proteins, the determination of whether such a 

protein is necessary for structural integrity or not is essential. This is usually 

achieved by creating a homozygous null strain for the protein in question and 

testing for sensitivity to a number of cell surface disrupting agents that target the 

cell wall or membrane. These included Calcofluor White (CFW), a fluorescent 

optical brightener with chitin-binding properties preventing chitin microfibril 

assembly, congo red, an inhibitor of glucan fiber assembly, and Sodium Dodecyl 

Sulfate (SDS), a detergent that compromises the integrity of the cell membrane. 

Since the cell wall is deposited above the cell membrane, any increased 

susceptibility to SDS implies a weaker cell wall. Antifungal susceptibility is 

studied by testing with caspofungin, a drug inhibiting the synthesis of ß-1,3-

glucan, the main component of the cell wall (Plaine et al., 2008). 
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1.5 Pga1 

Pga1 is-as of yet-an uncharacterized short 132 amino acid putative GPI 

anchored protein of unknown function localized in cell wall and that has been 

shown to be upregulated under conditions of cell wall regeneration. The current 

study thus aims at characterizing the role of Pga1 as far as virulence in a mouse 

model of disseminated candidiasis, filamentation on solid and liquid 

filamentation and non-filamentation inducing media, susceptibility to cell 

surface disrupting agents such as SDS, calcofluor white, congo red, oxidative 

stress response to a potentially lethal dose of hydrogen peroxide,  adhesion to 

human epithelial cells, and biofilm formation on polystyrene plastic surface, by 

creating a pga1 heterozygote and homozygous null strains and comparing the 

phenotype of the mutant  to the parental strain. 

Most techniques to create a null mutant in C. albicans utilize a cassette known as 

the urablaster. The urablaster is a cassette that contains a C. albicans URA3 

marker flanked by bacterial hisG direct repeats. Upon subcloning of your gene 

of interest at the 5’ and 3’ end of the cassette, followed by transformation, the 

cassette should integrate at the gene of interest locus, effectively knocking it out. 

The advantage of such a technique is that the marker is recyclable since the hisG 

repeats can align and undergo intrachromosomal recombination popping out 

the marker. Recently, however, it has been shown that the URA3 allele flanked 

by hisG repeats is not expressed to native levels resulting in a mutant phenotype 

(Sharkey et al., 2005). To avoid such complications, our null strain was 

generated by amplifying URA3 and HIS1 markers cassettes that included 100 bp 

homology regions from the 5’ and 3’ regions of PGA1. Since C. albicans is 

known to have a relatively high rate of homologous recombination (Magee et al., 

2003), integration of these cassettes at the 2 PGA1 loci created a pga1 null strain. 

Such a technique is fast, cheap and straightforward with a high success rate. 
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Thus, one of the outcomes of this study is to further understand and 

characterize the mechanisms and factors employed by C. albicans that make it 

such a potent pathogen. In the long run, this study should contribute to the 

treatment and the well being of patients by generating possible antifungal drug 

targets. 
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Chapter 2 
 

 

Materials and Methods 
 

2.1 Deletion cassette and strain construction 

The Candida albicans transforming plasmids, pABSK2 and pLHL, were utilized 

to amplify the URA3 and HIS1 deletion marker cassettes (Figure 8) respectively 

as described previously (Khalaf and Zitomer, 2001, Dib et al., 2008). Primers 

(Table 1) that included 100 bp  sequences of the 5’ and 3’ PGA1 open reading 

frame (ORF) were used to amplify either the URA3 or the HIS1 ORF resulting 

in cassettes that contain the marker gene, flanked by 100 bp PGA1 sequences. 

The Candida albicans strain RM1000 

(ura3Δ::λimm434/ura3Δ::λimm434his1::hisG/his1::hisG, Negredo et al., 1997) was 

used in this study and was transformed by the constructed URA3 marker 

cassette. By homologous recombination, the marker cassette integrated at the 

PGA1 locus creating a pga1::URA3/PGA1 heterozygote strain. For integration 

verification, a PGA1 primer upstream of the integration site, and an internal 

URA3 primer were utilized for PCR amplification on genomic DNA extracted 

from colonies grown on selective media lacking uridine. The 

pga1::URA3/pga1::HIS1 null mutant strain was generated from the heterozygote 

strain by transforming cells with the constructed HIS1 marker cassette. Deletion 

of the second allele was verified by PCR amplification utilizing the same 

upstream PGA1 primer and an internal HIS1 primer on genomic DNA 

extracted from colonies grown on selective media lacking uridine and histidine. 

Furthermore, confirmation of the pga1 deletion was achieved by PCR 
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amplification using a set of primers that hybridize to internal sequences of the 

PGA1 allele (Figure 9). 

 

Table 1: Primers used throughout this study.  

No. Primer Sequence 5’ primer 

hybridization 

locus 

1 PGA1-URA3DelF 5’TAATAAGATTATTTGAGTTTCAAACCAGTT 

TGATACATTTTTCATTAGAATATAGATTTAA 

AGTTCCGTCCATTTGTTTATTGAGTCGTACA 

TTTTCAAAAGATGGAATTGATTTGGATGGTA 

TAAACGG 3’ 

- 413 

2 PGA1-URA3DelR 5’TAATGTTGAAAACCTAGTCAGCCAGCTGT 

ATCCTCCCCATTTTATAATAAACCTAAAAT 

CAAAACAATACCACCAACAATGCCTGTGTA 

CAAACTCTCAATGCCGACTGTCATGATTTC 

TAGAAGGACCAC 3’ 

+ 953 

 

3 PGA1-HIS1DelF 5’TAATAAGATTATTTGAGTTTCAAACCAGT 

TTGATACATTTTTCATTAGAATATAGATTTA 

AAGTTCCGTCCATTTGTTTATTGAGTCGTAC 

ATTTTCAAAAGATCAGAAGTTAGTAGTAAC 

AATTTGG 3’ 

- 320 

4 PGA1-HIS1DelR 5’TAATGTTGAAAACCTAGTCAGCCAGCTGT 

ATCCTCCCCATTTTATAATAAACCTAAAAT 

CAAAACAATACCACCAACAATGCCTGTGTA 

CAAACTCTCAATGCCGAATAATATTTATGA 

GAAACTATCACTTC 3’ 

+ 926 

5 PGA1DelVerF 5’CAAACGTCAAATTGCAATAAAATAAGC 

CCAG 3’ 

- 170 

6 PGA1InternalF 5’CGTGTTATTTGGCATGTGTATTTGCATTG 3’ + 40 
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7 PGA1InternalR 5’GCTTGGGGCTATGTTAGCATTGGT 3’ + 300 

8 Actin F 5’GTTGCTGCTTTAATTATCGATAACGG 

TTCTGG 3’ 

+ 674 

9 Actin R 5’GGTGAACAATGGATGGACCAGATTCGTC 3’ + 1776 

10 URA3 verification R 5’CGGTCTGGTAAATGATTGACTAAATCCTCC 3’ + 30 

11 HIS1 verification R 5’CGGTCTGGTAAATGATTGACTAAATCC 3’ + 30 

 
Sequences listed mentioning its hybridization position at the locus 5’ end. Negative digits refer 

to promoter sequences. Positive digits refer to the ORF sequence relative to the transcription 

start site (+1). 

 

2.2 Media preparation and cell growth 

All strains were cultured without selection on rich potato dextrose agar (PDA) 

medium (Himedia Laboratories, Marg, Mumbai, India). For selective growth, 

yeast nitrogen base (YNB) synthetic medium (Fluka, Switzerland) was used 

lacking specific nutrients (Kaiser et al. 1994). All media used in the assay was 

supplemented with 50 µg/ml uridine and histidine. 

For filamentation assays on solid media, cultures were grown to a density of 

3×107 cells/ml, washed, and resuspended in PBS buffer at that same density. 

Samples with a volume of 5 µL were spotted on PDA, PDA with 20% fetal 

bovine serum (FBS, BioWhittaker Incorporated, Walkersville, MD, USA), 

medium M199 with Earle’s salts, L-glutamine buffered to pH 4 or pH 7.5 

(Sigma-Aldrich Corp. St. Louis, MO, USA), or Lee’s media buffered to pH 6.8. 

Cells were incubated for 3-4 days at 30°C and 37°C and monitored daily. 

For filamentation assays on liquid media, cells were inoculated in the same 

media mentioned above for 12 hr. Cell morphologies were examined 

microscopically after a period of 3 to 4 hr and after 12 hr. 
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Images were generated utilizing an Olympus E330-ADU-1.2x stereomicroscope 

for colony morphology. An Olympus CX41 was used for cell imaging coupled 

with a Sony DSC-S40 digital camera. 

 

2.3 Cell culture 

The human colon adenocarcinoma cell line HT-29 ATCC number HTB-38 was 

utilized for adhesion studies. Cells were grown in RPMI 1640 medium 

containing 25 mM Hepes and L-glutamine supplemented with 10% FBS, 100 

µg/ml of streptomycin and 100 U/ml of penicillin in a 5% CO2 environment. 

 

2.4 Oxidative stress assays 

Oxidative stress was performed as described previously (Dib et al., 2008). 

Parental, heterozygote, and null strains were grown in rich PDB media to 

exponential phase, adjusted to a cellular density of around 3x106 cells/ml, and 

treated for 180 min with 25 mM or 50 mM hydrogen peroxide. Cellular viability 

was monitored at 30 min intervals by optical density measurements. Untreated 

strains were used as controls. 

Furthermore, the same exponential phase cultures were treated with 10, 25, or 

50 mM hydrogen peroxide concentrations for one hr, after which 10 fold serial 

dilutions were made and 5µls of cells were spotted on PDA (Pedreno et al., 

2007). 

 

2.5 Cell surface disrupting agents 

Strains were grown on rich PDB media and their cellular density was adjusted to 

5 x 105 cells/ml. Serial dilutions were performed (105 to 101 cells/ml) and a 

sample volume of 5µl was spotted on PDA plates in the presence of one of the 

following cell surface disrupting agents: SDS at a concentration ranging from 

0.02%-0.05%, calcofluor white at a concentration ranging from 50-300 µg/ml, 
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and congo red at a concentration ranging from 20-75 µg/ml. Plates were 

incubated at 30 0C and monitored for 4 days. Growth on PDA plate lacking the 

disrupting agents was also performed and used as a growth control (Plaine et al., 

2008). 

 

2.6 Antifungal susceptibility assays 

The antifungal susceptibility test was determined using the Epsilometer test (E-

test) method on RPMI 1640 medium (supplemented with L-glutamine and 165 

mM MOPS, BioWhittaker). E-test strips of amphotericin B (AP), caspofungin 

(CS), and ketoconazole (KE) were supplied by AB Biodisk (Solna, Sweden). 

Inoculum preparation, inoculation, and strip application were performed 

according to the manufacturer’s recommendations. Minimal inhibitory 

concentration (MIC) readings were done after 48-hr incubation at 35°C. As 

recommended by the manufacturer, amphotericin B MICs were read as the 

lowest concentration on the E-test strip where there was 100% growth 

inhibition; at the point where the border of the elliptical inhibition zone 

intersects the strip. On the other hand, caspofungin and azoles MICs were read 

as the lowest concentration at which there was 80% inhibition or where there 

was a significant decline in growth. The MIC interpretive breakpoint criteria that 

were used in this study: (R), ≥1 μg/mL for ketoconazole; (R), ≥ 0.38 μg/mL for 

amphotericin B; and (S), ≤ 1 µg/mL for caspofungin (Dib et al., 2008). The C. 

albicans CLSI reference strain ATCC 90028 was used for quality control. All the 

obtained MIC’s fell within the control limits.  MIC range for ATCC 90028 is 

provided by the E-test manufacturer.  
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2.7 Adhesion assay 

Adhesion to epithelial cell line HT-29 was performed as previously described 

(Sharkey et al., 1999). C. albicans strains (~100 cells) were added to 6 well 

microtiter plates containing human epithelial cells and allowed to incubate for 

either 90 min or 180 min. Non-adherent cells were aspirated by washing with 

PBS and the wells were overlaid with warm agar. After 24 hr growth, the 

colonies were counted and compared to controls on sabouraud agar plated. 

Adhesion was expressed as a percentage of total cells added. Assay was repeated 

twice. Averages are shown. 

  

2.8 Biofilm formation 

Biofilm formation on polystyrene plastic microtiter plates was done as described 

previously (Peeters et al., 2008). 5x106 cells were added to a flat bottomed 

microtiter well pretreated overnight with 5% serum at 4 0C and incubated in a 

shaker (75 rpm) at 37 0C for 2 hr to allow adhesion. Non-adherent cells were 

rinsed away with PBS and plates were re-incubated for 48 hr and rinsed again. 

Methanol fixation followed by addition of a 0.2% crystal violet solution for 20 

min was performed. Unfixed crystal violet was washed away and bound crystal 

violet was released by acetic acid treatment. Absorbance of released crystal violet 

was measured at 590 nm. A negative control lacking adherent cells was also 

performed. Assay was repeated twice. Averages are shown. 

 

2.9 Disseminated candidiasis virulence assay 

3×107 freshly grown C. albicans cells of each strain were washed, resuspended in 

PBS solution, pH 7.5 and injected into female mice (Lebanese American 

University stock); 7 for the wild type and 14 for the null mutant; weighing 20-30 

grams via the lateral tail vein. Mice were fed with food and water ad libitum and 

monitored 3 times daily for survival over a period of 20 days. 
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2.10 Statistical analysis 

For the virulence assay, the Kaplan–Meier survival curve and the log Rank test 

were performed on the data collected using the SPSS computer software (SPSS 

Inc., USA). For adhesion assay, P-value was obtained by 2 factor analysis of 

variance with the interaction term. For biofilm formation assay, statistical 

analysis was done using the multiple comparison technique L.S.D (least 

significant difference). P values below 0.05 were deemed significant. 

 

2.11 Homology assessment 

A search for possible Pga1 homologues was done by BLASTing the Pga1 

sequence onto the C. albicans database at www.candidagenome.org. The closest 

C. dubliniensis orthologue was retrieved from that same database. BLASTing the 

Pga1 sequence onto the Saccharomyces cerevisiae genome (www.yeastgenome.org) 

was done to determine the closest S. cerevisiae orthologue. 

 

2.12 Protein modeling 

The sequence of Pga1 was retrieved from the previously mentioned Candida 

genome database and entered into these databases, 

http://www.ebi.ac.uk/Tools/InterProScan/ and 

http://www.cbs.dtu.dk/services/TMHMM/ to determine possible protein 

domains or transmembrane regions. 
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Chapter 3 

 

 

Results 
 

3.1 Verification of integration 

Transformation followed by homologous recombination of a URA3 cassette of 

1566 bp followed by a HIS1 cassette of 1466 bp deleted the two alleles of PGA1 

respectively producing a PGA1/pga1::URA3 heterozygote and a 

pga1::URA3/pga1::HIS1 homozygote null strains (Figure 8). 

Proper integration was verified by amplifying a DNA fragment of 580 bp and 

500 bp for the URA3 cassette and the HIS1 cassette respectively by the use of a 

PGA1 forward primer located outside of the integration site and a URA3 or 

HIS1 internal reverse primer. Confirmation of the absence of a PGA1 allele in 

the null mutant was achieved by amplifying with PGA1 internal primers   

(Figure 9). 
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(A) 

 
(B) 

 
 
Figure 8. PGA1 deletion strategy. 

Primers with flanking PGA1 sequence were used to amplify the marker genes generating 

integration cassettes. Upon transformation, homologous recombination at the 5’ and 3’ flanking 

regions should occur generating functional marker genes and pga1 mutant alleles.  

(A) URA3 recombination scheme 

(B) HIS1 recombination scheme 
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Figure 9. Deletion verification. 

(A) Presence of a 580 bp band confirming the generation of the PGA1/pga1::URA3 

heterozygote by the integration of the URA3 fragment. 

(B) 500 bp fragment confirming the integration of the HIS1 cassette and the generation of the 

pga1::URA3/pga1::HIS1 null. 

(C) Upper 1 kb bands in both lanes are for actin gene control; Lane 1: the presence of a 260 bp 

band in the heterozygote from A confirms the presence of a PGA1 allele, while in Lane 2 the 

lack of an internal PCR fragment confirms its absence in the null strain 

Lane M: Marker DNA ladder  

 

3.2 Protein Domain Modeling 

The 132 amino acid sequence of Pga1 was entered into both databases to 

determine possible protein domains and transmembrane regions. As can be seen 

in Figure 10, Pga1 consists of possibly three transmembrane domains, a short 

region protruding into the cell wall and a long cytoplasmic domain. 
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(A) 
 

SignalP  signal-peptide  

Tmhmm  transmembrane_regions  

 

 

 

(B) 

 
 
 

 

 

Figure 10. Pga1 protein domain.  

A) The InterProScan program predicted three transmembrane regions for Pga1, including an N-

terminal signal peptide.  

B) The TMHMM service confirmed this finding and suggested that in addition to these 

transmembrane regions, the protein consists of one main intracellular domain with another 

domain protruding into the cell wall from the membrane. 
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3.3 Filamenation assay  

 

On solid media: 

The wild type RM1000 + pABSK2, PGA1/pga1::URA3 heterozygote and 

pga1::URA3/pga1::HIS1  null were grown on PDA plates for 4 days at 30°C and 

37°C. As can be seen in Figures 11, the null mutant was over-filamentous as 

compared to the wild type strain with the heterozygote mutant showing an 

intermediary phenotype. No differences in growth were observed in cultures on 

medium M199 (pH 4 or pH 7.5), or Lee’s media (pH 6.8) (data not shown). 

In liquid media: 

All 3 strains were grown in PDB at 30ºC overnight. A similar discrepancy in 

phenotypes was noted as above (Figure 11). 
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PDA 300C 

 

 

 

PDA 370C 

 
 

Figure 11. Growth on PDA media. 

Strains were grown on liquid and solid PDA as described above and photographed at 20X 

magnification (solid), 1000X (liquid).  

Note the increased filamentation in the null as compared to the wild type strain after 4 days of 

growth (solid) and 12 hr (liquid) at both 30 and 370C.  

                 Null Mutant   Heterozygote Mutant                  Wild Type 

                 Null Mutant   Heterozygote Mutant                  Wild Type 

                 Null Mutant   Heterozygote Mutant                  Wild Type 
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3.4 Oxidative stress assays 

The oxidative stress assay was performed by two different methods. The first 

consisted of treating cells with different concentrations of hydrogen peroxide 

(25 mM and 50 mM) and monitoring cell growth spectrophotometrically at 30 

min intervals for 180 min. At 50 mM H2O2 concentration a very slight decrease 

in cell number was observed in the mutant as compared with the parental strain 

(Figure 12 A). In another assay, all three strains were subjected to various 

hydrogen peroxide concentrations (10, 25 and 50 mM) for 1 hr and then spotted 

onto PDA plates after serial dilutions. The homozygous mutant strain showed a 

marked decrease in resistance to 50 mM hydrogen peroxide concentrations in 

comparison to the heterozygote and wild type strains (Figure 12 B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

- 29 -

(A) 50 mM H202  

0

2

4

6

8

10

12

14

zero 30 60 90 120 150 180

Incubation time (min)

# 
of

 c
el

ls
 (1

0x
6)

 / 
m

l

Wild Type
PGA1 Heterozygote
pga1 Δ
Wild Type control
PGA1 Heterozygote control
pga1 Δ control

 
(B) 50 mM H202 

 

 
Figure 12. Oxidative stress challenge. 

(A) Cells were grown in the presence of 50 mM H2O2 and monitored at 30 min intervals. 

Untreated cells serve as controls. Note the slight decrease in cell number in the mutant over 

time.  

(B) Cells were grown in PDB and challenged with 50 mM H202 for 1 hr after which serial 

dilutions were made and cells plated on PDA. Note the marked decrease in resistance to 

oxidative stress in the mutant. 
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Mutant 

Null Mutant 

Wild Type 

102                     103                  104                  105                    Cells / ml 
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3.5 Cell surface disrupting agents 

The three strains were spotted onto PDA agar at five different concentrations 

and subjected to various concentrations of cell wall disturbing agents as 

described in the Materials and Methods. Figure 13 shows that the null strain was 

found to be more sensitive to calcofluor white but more resistant to SDS with 

no observable phenotypic difference with the wild type upon congo red 

exposure. 

 

 

                                                 

 

 

 

 

 

 

 

 
Figure 13. Susceptibility to cell surface disrupting agents. 

Cells spotted at various concentrations as described in the Materials and Methods and grown in 

the presence of cell surface perturbing agents at various concentrations. 

Note the increased sensitivity of the null to calcofluor white as opposed to an increased 

resistance to SDS. 

       0.03% SDS                   100µg/ml calcofluor white             30µg/ml congo red 
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3.6 Antifungal sensitivity 

Sensitivity to ketoconazole, amphotericin B and caspofungin was determined for 

the 3 strains using the E-test method after 24 hr of incubation. As can be seen 

in Table 2, no significant discrepancy was observed between the strains implying 

no altered sensitivity to any of the three antifungal agents. 

 

 

 

Table 2. Antifungal susceptibility. 

 
All three strains were assayed for antifungal susceptibility by the E-test method. Numbers 

represent MIC’s in µg/ml. No significant difference between the mutant and wild type strain 

was observed. 

 

 

 

 

 

 

 

 

 

 

 

Anti-fungal agent Wild type PGA1/pga1 pga1/pga1 

Amphotericin B 0.75 0.5 1 

Caspofungin 0.19 0.25 0.125 

Ketoconazole 0.032 0.016 0.032 
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3.7 Adhesion assay 

The wild type, heterozygote and null mutant strains were incubated with human 

epithelial cell line Ht-29 for 90 and 180 min. A dramatic and statistically 

significant decrease (p less than 0.001) was observed in the adhesion of the pga1 

null strain compared to the wild type where the heterozygote strain showed an 

intermediary phenotype at both incubation times (Figure 14). 

 

Figure 14. C. albicans adhesion to human epithelial cell line HT-29. 

Around 100 cells of all three PGA1 strains were incubated with human epithelial cells in 6-well 

microtiter plated for 90 and 180 min as described in the Materials and Methods. The percent 

adhesion was expressed as percent adherent cells versus total cells added.  

Note the statistically significant (p less than 0.001) and dramatic decrease in adhesion of the pga1 

null strain compared to the wild type, with the heterozygote strain exhibiting an intermediary 

phenotype. 
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3.8 Biofilm formation 

The three above mentioned strains were allowed to form biofilm on polystyrene 

wells as described in the Materials and Methods. Both mutants were statistically 

significantly defective in biofilm formation in comparison to the wild type        

(p less than 0.001 for both mutants compared to the wild type). A negative 

control whereby no cells were added was also performed (Figure 15). 

 

 

Figure 15. Biofilm Formation. 

Biofilm formation on polystyrene plastic microtiter plates done as described previously. 

Absorbance of released Crystal Violet was measured at 590 nm. A negative control lacking 

adherent cells was performed. 

Note the decreased crystal violet concentration (33%) in heterozygote and null mutant strains in 

comparison with wild type strain corresponding to a decrease in biofilm formation. 
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3.9 Murine model of disseminated candidiasis 

BALB/c mice were injected in the tail vein with 3x107 C. albicans cells of either 

the wild type or the null mutant strain. As can be seen in Figure 16, all mice 

injected with the wild type strain were killed while around 14% of mice injected 

with the mutant survived. This slight discrepancy was however not statistically 

significant (p=0.8) Thus, the homozygote null strain might be similar to the wild 

type as far as virulence is concerned. 

 
Figure 16. Disseminated candidiasis virulence assay. 
Disseminated candidiasis experiment was performed on female BALB/c mice; 7 for the wild 

type and 14 for the null mutant as described in Materials and Methods. For statistical analysis, 

the Kaplan–Meier survival curve and the log Rank test was performed.  

Note the slight but not significant difference in survival between the two strains (p=0.8). 
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Chapter 4 

 

 

Discussion 

 
The cell wall of many fungi including C. albicans is a complex entity consisting 

mainly of ß-1,3-linked and ß-1,6-glucan in addition to chitin and mannoproteins 

which determine surface properties, enabling C. albicans cells to interact and 

adhere to host tissues (Chaffin et al., 1998). As antigenic determinants, Candida 

albicans cell wall proteins in general, and GPI anchor proteins in particular, can 

be possible targets for novel antifungal agents and as such research is 

increasingly focusing on characterizing them as they have been known to play a 

role in virulence and filamentation. 

Based on the literature in www.candidagenome.org, the PGA protein family 

comprises not less than 65 members. Most are uncharacterized proteins sharing 

no real sequence similarity amongst them besides the N-terminal signal peptide 

and C-terminal GPI anchor site. Some are actually aliases of characterized 

ORFs, such as Pga2 and Pga3, which are more commonly known as SOD4 and 

SOD5 coding for superoxide dismutases (Martchenko et al., 2004), or Pga47, 

known as Eap1, which is necessary for adhesion and biofilm formation (Richard 

and Plaine, 2007).  

Furthermore, no PGA1 homologue is found within C. albicans. Upon BLASTing 

the amino acid sequence of Pga1 onto the Saccharomyces cerevisiae database 

(www.yeastgenome.org) however, we found a protein, Kre1, with strong amino 

acid similarity to Pga1 and as such a possible S. cerevisiae orthologue. Kre1 has 

been actually shown to be involved in ß-glucan assembly (Lesage and Bussey, 

2006). The Candida database also revealed a possible orthologue in Candida 
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dubliniensis (a very close relative of C. albicans). However this protein has not yet 

been characterized to give us any insight as to the role pga1 plays in C. albicans. 

The fact that PGA1 has been shown to be induced during cell wall regeneration 

might imply a role in cell wall rigidity and stability of the organism, and, as a 

GPI-anchored protein, it might also play a role in virulence or filamentation 

(Castillo et al., 2006). We thus decided to characterize Pga1 by generating a pga1 

null strain. 

In addition, C. Ojaimi (personal communication) has generated a PGA1 

revertant strain. In a revertant strain, the deleted allele is replaced to confirm 

that any phenotypic discrepancy between the mutant and the wild type is in fact 

due to the deletion and not to another secondary mutation. The revertant strain 

has confirmed the above mentioned phenotypes. 

Our null strain showed many phenotypic differences compared to the parental 

wild type strain. One pertains to the general oxidative stress response. Two 

experiments were performed to address the issue. The reason behind 

performing two different experiments is because initially we measured cell 

viability to a hydrogen peroxide challenge spectrophotometrically. However, as 

the cellular optical density did not vary much upon hydrogen peroxide addition, 

we could not determine whether the cells were dead but intact, or alive but not 

dividing. To address this issue, we decided to perform the spotting test. Our 

data showed that Pga1 is necessary for proper oxidative stress response even 

though it is not known to play a role in the Hog1 general stress response 

pathway activated upon oxidative stress (Enjalbert et al., 2006). One explanation 

would be an indirect effect through a weakening of the cell surface in the 

mutant. Such reasoning also explains the increased susceptibility on the mutant 

to calcofluor white, a cell wall disrupting agent that prevents chitin microfibril 

assembly (Herth 1980). This theory is supported by the fact that PGA1 is 

induced during cell wall regeneration and thus plays a role in cell wall stability 
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and rigidity (Castillo et al., 2006). Interestingly, this susceptibility was not evident 

with caspofungin or Congo red, two other cell wall disrupting agents, which 

inhibit ß-1,3-glucan synthesis and glucan fiber assembly (Kopecka et al., 1992) 

respectively. The calcofluor and caspofungin data suggest that Pga1 might not 

be necessary for glucan microfibril biogenesis and assembly as inferred from 

homology assessment but rather for proper chitin microfibril assembly and 

maintenance.  

An interesting and initially unexpected phenotype was the increased resistance 

to SDS, a cell membrane solubilizing agent. The questions that arise is why 

would a cell wall protein dramatically destabilize the cell membrane to such an 

extend and second, why is the phenotype one of increased resistance rather than 

increased sensitivity which is what one might expect after mutating a cell surface 

protein. The first question can be answered by the protein domain modeling 

data. The data showed the Pga1 probably consists of no less than three 

transmembrane domains. Based on this information, it should come as no 

surprise that the cell membrane became affected by the deletion. The second 

question however is more difficult to answer and assumes that the cell has 

upregulated key cell surface response elements to compensate the deletion. In 

fact, Plaine et al. (2008) has shown that one key response element to cell wall 

mutations that destabilize the cell surface is thickening of the cell wall through 

increased chitin deposition. Whether there is an increase in chitin levels in our 

mutant remains to be seen. However, the oxidative stress data suggests 

otherwise. Upregulation of cell surface proteins might have occurred that 

decreased SDS permeability without decreasing H2O2 permeability. 

Alternatively, the mutants might have destabilized and altered the cell wall 

architecture thus preventing anchoring of SODs on the cell surface that are 

necessary for proper oxidative stress response. 
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Another interesting phenotype of the mutant is its over-filamentation compared 

to the parental. The reason for this is yet to be determined. Again, however, 

whether the cell compensates a pga1 deletion and responds by up regulating 

other cell surface components and filamentation induced genes is possible. 

Our adhesion assays to human epithelial cells showed the mutant to bind cells 

50% less than the wild type after 90 min incubation. This phenotype was not 

simply due to a delay in adhesion but to an adhesion defect since incubating for 

an extended period of time did not abolish the phenotype. Pga1 is not assumed 

to be a cell wall adhesin as it does not display similarity in sequence to other 

adhesins, or consist of an immunoglobulin-like domain followed by serine-

threonine-rich conserved repeat regions, characteristic of many adhesins 

(Rauceo et al., 2006). The observed phenotype is thus indirect. By altering the 

morphology, composition, and structure of the cell surface, a pga1 deletion 

might prevent proper anchoring and positioning of adhesins on the cell surface. 

The biofilm data confirms the adhesion defect as our mutant could only adhere 

to polystyrene plastic 65% as well as the wild type. Since adhesion to plastic is a 

precursor to biofilm formation, one would definitely expect a defect in adhesion 

to be translated as a defect in biofilm formation. In this sense, a pga1 null strain 

shows a similar phenotype to a deletion of another GPI-anchored protein, 

Pga47, which has also been shown to be necessary for proper adhesion and 

biofilm formation and which, interestingly is induced during cell wall 

regeneration. Richard and Plaine, 2007 theorized that deletion of pga47 

produced a weak, unstable and non rigid cell wall that could not handle the 

formation of biofilm layers. 

Finally, the virulence data indicated the possibility that our pga1 null strain was 

slightly more attenuated in virulence, a phenotype to be expected bearing in 

mind the defect in adhesion. Many cell wall mutations have shown that a lack of 

adhesion is mirrored as a lack in virulence. The logic behind such argument is 
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simple, if a pathogen cannot adhere, it cannot invade tissues and organs to cause 

systemic infection and death (Karkowska-Kuleta et al., 2009). It is important to 

note however that the difference in virulence between the parental and null 

strains did not reach statistical significance and thus a larger more statistically 

significant number of mice should be infected in future experiments to clearly 

address this issue. 
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Chapter 5 

 

 

Conclusion 

 
Our preliminary characterization of Pga1 revealed that the protein is necessary 

for proper cell wall integrity, adhesion and biofilm formation. In addition, the 

mutant strain showed hyperfilamentation and an increase in resistance to 

oxidative stress. More experiments are needed to fully address the role Pga1 

plays, notably microarray analysis to determine which filamentation inducing 

genes are up or down-regulated in response to this deletion, matrix-assisted laser 

desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) to 

determine changes in the cell wall proteome that might have occurred to 

compensate for such a deletion. Furthermore, cell wall thickness and especially 

chitin content should also be determined to reveal whether in a pga1 null 

mutant, chitin assembly is disrupted as suggested by the calcofluor white assay, 

or whether on the contrary, the cell compensates the mutation by upregulating 

chitin content. 
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