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Measuring Ripple Effect for Object-Oriented Programs

Abstract

by

Hani Hassan Salem

Ripple effect is a measure of structural complexity of a source code upon
changing a method or a class. Ripple effect measures the amount by which this method /
class may affect other methods or classes within a program, or programs within a system,
if changes are made. Measurement of ripple effect has been incorporated into several
software maintenance models because it shows maintainers the ramifications of any
change that they may make before that change is actually implemented. Thus,
computation of ripple effect provides a potentially valuable source of information. In this
thesis, we propose a ripple effect measure for object-oriented programs and use it to
compute an index for logical stability. Our approach is based on a new algorithm that will
calculate the ripple effect for object-oriented programs at the code level by calculating
both intra-class propagation and inter-class propagation for each class. It also determines
the architecture ripple effect at the system level. Our method is based on matrix
arithmetic for producing a ripple effect and logical stability measures and is illustrated by

applying it to two examples.



To Wom & Dad



ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Nashat Mansour for his guidance and helpful
hints throughout my M.S studies. Thanks also to Dr. Ramzi Haraty and Dr. May Abboud
for being on my Thesis committee.

I would like also to thank Dr. Sue Black from South Bank University for her
encouragement and trust.

Finally, I would like to thank my family and best friend friends for their long
support.



Table of Contents

Page
l.Introduction.......... —— T U PO DT UUTTPTIEN, .

2. Background on Ripple effect and logical stability .............cccovvnneen. 15

2.1 Ripple Effect as a complexity measure .............cooviiiiiiinninn 15
2.1.1 Code Level Logical STaDIEY .. i iiiiissviimissssssiviemmon 16
2.1 2 Design Lievel Lopical StabUIty e ervisiins veseviinanpime 18

2.2 Ripple Effect and Software Maintenance .............c.ccoevnennn 18

2o antmahne Raphle BIeE ... cvamsrmmasnsnissmmasymsesmtmmusesum 20
2.3.1 Tools Which Produce a Ripple Effect Measure........... 21
2.3.2 Tools Which Trace Ripple Effect through a System...... 22
2.3.3 Tools which Trace Impact Analysis and Ripple Effect through
Object Oriented Paradigm .. cavorssmasvepsvospesvsmnnion 24
B B IR . owowicaincs oo s B A BB AW SR S SO 26

3. Object Oriented Dependences and Relations ...........cocvvviiiiiinnnnn 28

3.1 Change Impact Definitions ....cocccuveniinvansissmvssisassnamens 31

3.2 Qbject-oriented System Dependency’ -« vvvinisvresisvmman s 32

vi



3.3 Types of Changes and Their Relationship ..................ol 34

3.4 Object Oriented Features and Relationships ...........c.coinis 36
341 Bncapsulation: cosasinnamisi s o 36
38,2 InHertlanee. oo v s v rsn Bl s 08 A e 37
3.4.3 POlymorphiSm i i e s iaiaenig s 37
344 Dynamic BMAME oo s 37
3.5 Change Propagation: s i e i 37

3.5.1 Intra Class change propagation............cocceevnnn 38
3.5.2 Inter-class change propagation .............coovvene 38
3.5.3 System dependency propagation..................... 39
3.6 Metrics for Object Oriented Ripple Effect..................... 39
3.6:] Inter-Class Metrics i cinissmisimaiaiaine 39
302 Intra-Class WIeITIeR. ... .. s iivaniiansasisnnasanssnnn i 4]

4. Counting Ripple Effect as a Matrix Product..... ..ccoovvivvrinriinniinnn... 42

4.1 Intraclass Change Propagation ..... .....oevvviiieiiinie i 42
4.1.1Decomposition of Matrix Zm........covvvvivniirinniieinnn, 46
4.1.2 Problems in calculating inter-class propagation ......... 50
4.2 Interelans Chifige PYODABAtION: v corvsvorvemensmssomnoneapnnmssns 31
4.3 Conmplexity and Logical STabilitV- ..ux sesssemsmmnnnsnsemnvsenmmanns 53

vii



4.4 Architecture Level Ripple Effect  -..cvivviiimimiseas i 55

5. Examplel cicuitiniaiivenaasiiseraes iisinisiai s s s snassasaia i e sns st O

5.1 Computing Ripple Effect for an Example Class.. .................. 58

5.2 Counting Ripple effect for Calculations.java class ................ 67

6. Future Work iviiassananssavia sadiniasieiissirsissisvisvss il vaveises S &

6.1 Ripple Effect in Distributed Systems......cccuviviiciiiniamaninimi 3
6.2 Ripple Effect and Regression Testing..........ccccvimivnisinsnine 74
6.3 Rapple Eftect Using UM, oo sccnsmnvnis sosivass sewos sinuniie vanr s 74
6.4 Possible Class-Level Ripple Effect Analysis estimation with syntactic
e 75
6.5 Ripple Effect in Web Applications ..........covvvviiiiiiiiiiiiinin. 78

T! Cu“clusin“ L N A ) Tg

OB ST MOERRTIEE. . v v s ok s oy s S R AR 80

| 5 g LV R e e ol e R S R L ke e S IR EE s |

viii



Figure

Figure 1.1
Figure 4.1
Figure 4.2
Figure 4.3

Figure 5.1
Figure 5.2

List of Figures

Title

A methodology for software maintenance
Example code of Class C

Assignment and Definition/ use

Assignment and Definition/ use information held
in Matrix B

Example. java

Calculation.java

.4

43

47

48

59
71



Figure

Table 2.1

Table 5.1

Table 6.6

Table 6.7

List of Tables

Title

Table comparing speed and accuracy of
logical stability computation

REA results

Attribute (A) of Class (C)

Method (M) of Class (C)

65

76

76



Chapter 1

Introduction

Ripple effect has an intuitive appeal. Imagine a stone being thrown into a
pond: it makes a sound as it enters the water and causes ripples to move outwards to
the edge of the pond. It is reasonably easy to transfer this image to source code. The
stone entering the water is now a hypothetical change to the source code of a program,
the effect of the change ripples across the source code via data flow.

As part of software development or maintenance we may want to ask questions about
the program such as: How much ripple is there? Which parts of the program affect

other parts the most?

The Ripple-effect measure has been identified as valid and necessary within
several software maintenance models, particularly the SADT model [PB90] and the
Methodology for Software Maintenance [YCR0][Ben90]. Typically, 70% of software
development budgets are spent on maintenance, thus its importance in the field of
software engineering cannot be denied. Any measures or tools which can assist
maintainers in their role by speeding up the rate at which changes can be made, or
enabling maintainers to make better informed decisions on code changes can thus
make an important contribution. Software maintenance was originally classified by

Swanson in 1976 into three types [SW76]:

+ Corrective maintenance: to address processing, performance or
implementation failure.

= Adaptive maintenance: to address change in the data or processing
environments.

e Perfective maintenance: to address processing efficiency performance

enhancement and maintainability.



The classification was redefined by the IEEE glossary [IE90] in 1990 to include:
e Prevention maintenance: to address activities aimed at increasing the system's
mairtainability.
s Maintenance types are divided into corrections that correct a defect, and
enhancements that implement a change to the system which changes the

behavior or implementation of the system.

As all types of maintenance involve making changes to source code, ripple effect can
be used to help maintainers by highlighting modules which may cause problems
during the maintenance process. Ripple effect can show the maintainer what the effect
of that change will be on the rest of the program or system. It can highlight classes
with high ripple effect as possible problem classes, show the impact in terms of
increased ripple effect or look at the ripple effect of a program and its classes before
and after a change to ascertain whether the change has increased, or perhaps
decreased, the stability of the program. Maintenance is difficult [vZE93] because it is
not clear where modifications have to be made or what the impact will be on the rest
of the source code once those changes are made; the ripple effect can certainly be
used to help maintainers with the latter. Ripple effect, is not the answer to all
maintainers' problems, but can be used as part of a suite of metrics it can give

maintainers useful information to make their task easier,

There is a strong link between software maintenance and ripple effect. Computation
of ripple effect and logical stability of a class are based on a subset of maintenance
activity: a change to a single variable definition within a class. Regardless of the
complexity of the maintenance activity being performed, maintenance fundamentally
consists of modifications to variables within classes of code. Logical stability is
computed based on the impact of these modifications. It can be used to predict the
impact of primitive modifications on a program, and so be used to compute the logical
stability of classes with respect to those primitive modifications. The effect of
modification may not be local to the class but may affect other parts of the program.
Therefore, there is a ripple effect from the location of the modification to other parts

of the program that are affected by the modification. If the logical stability of a



program is poor, then the impact of any modification is large and hence the

maintenance cost will be high and reliability may also suffer.

Several software maintenance models have been proposed in the past. Boehm's model

[Boe87] consists of three major phases:

e Understanding the software;
* Modifying the software;
e Revalidating the software.

There are fundamentals activities of the software maintenance process. With Yau's
model, A Methodology for Software [YC80], impact analysis is introduced into the
lifecycle. The model consists of four phases, and includes analysis and monitoring of
the impact of change at phase three accounting for ripple effect (see Figure 1.1). The
aims of the model are to assist in achieving cost effective software maintenance and
the development of easily maintainable softiware. Phase one is the analyzing the
program in order to understand it. The complexity of the program, the documentation
and the self-descriptiveness of the program contribute to the ease of understanding of
the program. Phase two is generating a particular maintenance proposal to accomplish
the implementation of the maintenance objective. The third phase is accounting for all
of the ripple effect as a consequence of program modifications. The effect may not be
local to the modification but may also affect other portions of the program. The main
attribute affecting the ripple effect a as a consequence of a program modification is
the stability of a program, that is the resistance to the amplification of changes in a
program, the fourth phase the modification program is tested to ensure that it has at

least the same reality as before.
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Figure 1.1 A methodology for software maintenance

The Peeger and Bohner model[PB90], SADT Diagram of Software Maintenance
Activities has six phases, the main difference from Yau's model being that it includes
analysis software change impact at phase two, i.e. much earlier in the life cycle. The
feedback paths in the SADT model indicate attributes that must be measured; the
resulls are ten assessed by management before the next activity is undertaken. The
melrics act as a controlling mechanism in the progression from existing system and
change requests to new system. Manage software maintenance controls the sequence
of activities by receiving feedback and determining the next appropriate action.
Analyze software change impact evaluates the effects of a proposed change; it
determines if change can be made without disturbing the rest of the software.
Understand software under change involves source code and related analysis, i.e. of
documentation to understand the system and the proposed change. [fmplement
mainfenance change generates the proposed change. Account for ripple effect
analyses the propagation of changes to other modules as a result of the change just
implemented. The modifications are tested to meet new requirements and the overall

system in subject to regression testing in the last phase: Test affected software.

11



A method for computing ripple effect was developed early by Yau and Collofello
[YCM78] and developed over several years. It was proved difficult to write simple
software using this algorithm; ripple effect tools have either taken an excessive
amount of time to produce ripple effect measures or needed some user intervention to
make critical decisions about the source code, Previous tools developed to produce
ripple effect measures for procedural software have used Yau and Collofello's
algorithm which is based on set theory, Several attempts have been made at using the
algorithm to construct a tool to produce fast and accurate ripple effect measurements,
none of which have completely succeeded. Black [Bla01] had reformulated the ripple
effect algorithm using matrix arithmetic and used this reformulated algorithm to
produce a software tool: REST [Bla01]. However, Black's algorithm computes ripple

effect only for procedural programs.

Several works have been done concerning the object-oriented programs. However,
these studies discussed only the change impact analysis for object-oriented paradigm
and its relation with regression testing but none mentioned or suggested a tool or
measure for the ripple effect in object-oriented programs. Kung et al. [KGH94] were
interested in the system-wide impact of changes for regression-testing purposes. Li
and Offutt [LO96] presented algorithms to analyze the potential impacts of changes to
object-oriented software, taking into account encapsulation, inheritance and
polymorphism. Kabaili et al [KKLO2] used a model to calculate the impacted classes
due to an atomic change. They presented an extension of the changed impact model;
the first extension took into account the classes that are impacted by ripple effect,
whereas, in the second extension, they counted classes that need to be re-tested even if
they are not directly affected. Barbara Ryder and Frank Tip [RTO1] used a call graph
for change impact analysis. Further on change impact analysis for object oriented
programs can be found in: [CKL99], [RAJO1], [RTO1], [WK00] [BLS02], [KGH%4],
[LOAODO], [LI98], [LO%6].

In this thesis we propose ripple effect and logical stability measures for object-
oriented program using matrix arithmetic. We provide an analysis of object-oriented
dependencies, relations, and propagations inside and outside classes. Also, we study

object-oriented complexity metrics and their relation to ripple effect and classify them

12



as inter-class metrics and intra-class after introducing new object-oriented metrics.
We calculate the ripple effect for object-oriented programs at the code level. Both
intra-class propagation and inter-class propagation for each class are considered. We
also calculate the architectural ripple effect at the system level. Our algorithm also
clarifies the process of computing ripple effect. Each matrix used within the algorithm
holds a particular type of information about the software under scrutiny. This makes it
easier to understand what each part of the algorithm means and how the ripple effect

is being computed.

This thesis is organized as follows:

Chapter 2 Review the literature about ripple effect and logical stability measures.
Ripple effect is included in several software maintenance models as part of the
maintenance lifecycle. We take a look at these models and show where ripple effect

measurement fits in.

Chapter 3 gives a detailed description of all the object-oriented dependencies and
relations. A list is made describing Object-oriented System dependencies which are
categorized as: Class-to-Class dependencies, Class to Method, Class to Variable,
Method to Variable and Method to Method. Also, all the possible types of changes
made at the system level and class level are listed and their Relationship. Afier that,
we describe object-oriented features such as inheritance, polymorphism, aggregation
and data binding and their relation with ripple effect analysis and list inter-class and
intra-class metrics. Finally, we study object-oriented complexity metrics and classify
them into intra-class and inter-class metrics and study each one relation with ripple

effect.

Chapter 4 gives a precise definition of the computation of ripple effect in Object
Oriented sofiware. Two fundamental ideas in its computation are code level which

includes intra-class and inter-class change propagation and architecture level. This

13



chapter gives a detailed description of what they are and how they may be computed

using two matrices

Chapter 5 describes in detail how to apply our proposed approach on two example
classes showing step by step computation of ripple effect and logical stability using

matrix arithmetic.

Chapter 6 suggests a list of future work such as fully automating our approach,
measuring ripple effect for distributed systems and web applications, measuring ripple
effect using Unified Model Language (UML), the use of ripple effect in regression
testing and class ripple effect analysis using syntactic impact.

Chapter 7 is the concluding chapter in which we summarize and conclude our thesis.



Chapter 2

Background on Ripple effect and logical stability

The ripple effect measures the effect that a change to a single variable or a
statement will have on the rest of a program or how likely it is that a change to a
particular method or class is going to cause problems in the rest of a program. It can
determine the scope of the change and provide a measure of the program complexity.
It can also be used as an indicator of the complexity of a particular method, class or
program. Ripple effect was one of the earliest metrics concerned with the structure of

a system and how its modules interact [She93].

The first mention of the term ripple effect in software engineering is by Haney
in 1972 [Han72]. He used a technique called "module connection analysis" to
estimate the total number of changes needed to stabilize a system. Myers [Mye80]
used the joint probability of connection between all elements within a system to
produce a program stability measure. A matrix is set up to store the weighting of each
possible connection within a system, then another matrix is derived estimating the
joint probability density for any two states in the first matrix. The limit probability
vector is found using these matrices and used to calculate the stability of the system.
Soong [Soo077] used the joint probability of connection of all elements within a
system to produce a program stability measure. Haney, Myers and Soong's methods
are all measures of probability, the probability of a change to a variable or module
affecting another variable or module. Yau and Collofello's ripple effect uses similar

ideas of my research however; their ripple effect is not a measure of probability.

2.1 Ripple Effect as a complexity measure

When Yau and Collofello first proposed a ripple effect analysis technique in 1978
[YCM7E] they saw it as a complexity measure, which could be used during software



maintenance to evaluate and compare various modifications to source code. Ripple

effect was defined by Haney [Han72] as:

"The phenomenon by which changes to one program area have tendencies to be felt in

other program areas"

It is split by Yau and Collofello into two aspects:

a) Logical: identification of program areas requiring additional maintenance to ensure
consistency with an original change.

b) Performance: analysis of changes to one program area which may affect the

performance of other program areas.

The technigue did not provide proposals for modifying a system, but rather was
applied after a number of maintenance proposals had been generated. The complexity
could then be computed for each modification and the best proposal selected from

both a logical and a performance perspective.

Computation of logical ripple effect involved using error flow analysis. All program
variable definitions involved in an initial modification represented primary error
sources from which inconsistency could propagate to other program areas.
Identification of affected program areas could then be made by internally tracking
each primary error source and its respective secondary error sources within the
module to a point of exit. At each point of exil a determination would be made as to
which error sources propagated across module boundaries. Those that did became
primary error sources within the relevant modules. Propagation continued until no
new secondary error sources were created. The analysis is split into two stages: lexical

analysis and computation of ripple effect.

2.1.1 Code Level Logical Stability

This work was carried further in 1980 to produce a logical stability measure
(the algorithm given in [YC80]). Logical stability is defined [YCB80, p. 547] as:
"A measure of the resistance to the expected impact of a modification to the module

on other modules within the program".

16



In [YC80] a software maintenance process is identified of which accounting for ripple
effect is Phase 3 (Figure 1.1). Logical ripple effect is now split into two more easily
comprehensible aspects: intramodule change propagation and intermodule change
propagation. Intramodule change propagation was used to identify the set Zki of
interface variables which are affected by logical ripple effect as a consequence of
modification to variable definition § in module k. This requires an identification of
which variables constitute the module's interfaces with other modules and a
characterization of the potential intramodule change propagation among the variables
inside the module, Interface wvariables are defined as: global wvariables, output
parameters and variables utilized as input parameters to called modules. Intermodule
change propagation is then used to compute the set Xk consisting of modules
involved in intermodule change propagation as a consequence of being affected by

interface variable j of module k.

Xkj is calculated by first identifying all of the modules for which j is an input
parameter or global variable. For each of these modules the intramodule change
propagation emanating from j is then traced to the interface variables within the
module. The modules involved in the intermodule change propagation as a
consequence of modifying variable i of module k can then be represented by the set
Wki, The logical complexity LCMki of each variable i in every module & is then
computed using McCabe's Cyclomatic complexity. The probability that a particular
variable definition i of a module k will be selected for modification is then estimated
as:
1 / (number of variable definitions in the module)

The product of the probability with the LCM for each variable definition i gives the
logical ripple effect for the module &, LREk. The logical stability measure for module
k denoted LSk is the reciprocal of LREK.



2.1.2 Design Level Logical Stability

In the eighties the general emphasis for software measurement extended from
source code measurement to measurement of design. The thinking behind this was
that as design measurement gives feedback earlier in the software lifecycle, problems
could be identified and eliminated or controlled before the source code was actually

written, thus saving time and money,

Yau and Collofello published a paper applying the same ideas that they had used in
producing their code level stability measure [YCB0] to produce a design level stability
measure [YC85]. The design measure analyses the module invocation hierarchy and
use of global data referenced or defined in modules to produce the design stability of
a program. The main difference between code level stability and design level stability
is that the design stability algorithm does not consider intramodule change
propagation. It produces a measure of ripple effect between modules without taking
into account what happens inside them. This presupposes that information about
parameters passed between modules, global variables etc... is already known. Yau
and Collofello recommended that their measure be used to compare alternative
programs at the design phase and to identify which portions of the program may cause
problems with ripple effect during the maintenance phase. It will be seen that our
approximated computation of code-level ripple effect is based on making a general
assumption about intermodule flow. It might therefore be seen as sitting mid-way
between Yau and Collofello’s original algorithm and their proposal for a design level

measure,

2.2 Ripple Effect and Software Maintenance

Software maintenance has been classified into four types [Pre94]:

» Perfective maintenance - to alter functionality
e Adaptive maintenance - to adapt software to changes in its environment

s Corrective maintenance - to correct errors



e Preventative maintenance - to update software in anticipation of future

problems

Ripple effect can highlight modules with high ripple effect as possible problem
modules which may be especially useful in preventative maintenance. It can show the
impact in terms of increased ripple effect during perfective and adaptive maintenance
where the functionality of a program is being modified or its environment has
changed. During corrective maintenance it may be helpful to look at the ripple effect
of the changed program and its modules before and afier a change to ascertain
whether the change has increased, or perhaps decreased, the stability of the program.

It is generally believed that there is a strong link between sofiware maintenance and
ripple effect. Computation of ripple effect and logical stability of a module are based
on a subset of the maintenance activity: a change to a single variable definition within

amodule [YC80].

Regardless of the complexity of the maintenance activity being performed, it basically
consists of modifications to variables within modules of code. Logical stability is
computed based on the impact of these modifications. It can be used to predict the
impact of primitive modifications on a program and thus be used to compute the
logical stability of modules with respect to the primitive modifications. The effect of
modification may not be local to the module but may affect other parts of the
program; there is a ripple effect from the location of the modification to other parts of
the program that are affected by the modification. If the stability of a program is poor
the impact of any modification is large, hence the maintenance cost will be high and
reliability may also suffer.

Several software maintenance models have been proposed in the past, Boehm's model

[Boe87] consists of three major phases:
s understanding the software

* modifying the software

e revalidating the software

19



These are the fundamental activities of the software maintenance process. With Yau's
madel shown in Figure 2.1 [YC80], there is the introduction of impact analysis into

the lifecycle.

The model consists of four phases, and includes analysis and monitoring of the impact
of change at phase three "accounting for ripple effect”. The aims of the model were to
assist in achieving cost effective software maintenance and the development of easily
maintainable sofiware. Ripple effect is measured by Yau ef af [YCM78] as part of a
maintenance technique with which maintenance practitioners can understand the
scope of changes made to their programs. Yau er al/ found that applying a
maintenance technique based on ripple effect analysis gave benefits including:
smoother implementation of changes, the injection of fewer faults, less structural
degradation, a decrease in the growth of complexity and an extension to the operating

life of the software.

The Pfleeger and Bohner model [PB90] has six phases, the main difference from
Yau's model being that it includes "analyse software change impact” at phase two ie.
much earlier in the lifecycle. The feedback paths in the SADT model indicate
attributes that must be measured; the results are then assessed by management before
the next activity is undertaken. The metrics act as a controlling mechanism in the

progression from existing system and change requests, to new system.

2.3 Automating Ripple Effect
Automation of ripple effect can focus in two directions: the computation of

ripple effect measures; the tracing of ripple effect of variables through a program or a

system.

20



2.3.1 Tools for Ripple Effect Measures

A prototype tool for ripple effect analysis of Pascal programs was introduced
in [Hsi82]. The pseudocode algorithms used to produce the tool are presented and
explained in detail. The tool consists of three subsystems: an intramodule error flow
analyzer, an intermodule error flow analyzer and a logical ripple effect identification
subsystern. They found that they could not identify primary error sources
automatically, thus some user input was required. The intramodule error flow
analyzer collects information about variable medication and use and the relationship
between those medications and uses. The intermodule error flow analyzer computes

summary data flow information for each module.

Then, the logical ripple effect identification subsystem traces the impact of each
variable identified by the user. The tracing phase consumes a large amount of
computation time, which according to S. S. Yau and 5. C. Chang in [YC84] made it
infeasible in some cases. Hsieh states that: "The experience we gathered using this
prototype system indicates that the logical ripple effect analysis technique can be a
powerful tool..." [Hsi82, p. 151]. Unfortunately no details are given of any measures
produced by the tool in [Hsi82], but they are referred to for comparison by Yau and
Chang in [YCB4].

Yau and Chang [YC84] found that techniques for performing ripple effect analysis
were taking too much computation time to be practical for large programs. They
presented a new algorithm which was put forward as being much faster at computing
logical stability than previous versions. Processor time for computation of logical
stability for six programs was compared with the processor time using Hsieh's tool
.Their algorithm does not include information from the intramodule phase as they felt
that disregarding this information simplified the problem and also simulated the
environment of the program design phase. Logical stability and speed of calculation
for Pascal programs between 684 and 1744 lines long were compared (shown in Table

2.1).
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(Hsieh)  (Chang) Time

Program CPU sec. CPUsec. Ratio %

 ETUESER 684 7P e 21 SHION S D ARS 1 263 BB A SR 5 0,94
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5 21735 -4 30 12 Bokie031 8348 551 5.9 0.58
6 V115 g Rk 31 8724 SEBERE 5 6 0.16
All 8892 168 77480 2339 3 0.75

Table 2.1: Table comparing speed and accuracy of logical stability computation from [YC84)

Two algorithms are presented in [ChaB4] for computing ripple effect. The first,
mentioned above and implemented as a tool, does not consider intramodular
information. The second, which does consider intramodular information

unfortunately, is not implemented as a tool.

Yau and Chang improved the situation regarding problems with computation time but
only for a limited version of the logical stability measure. Their algorithm was much
faster than Hsieh's but it seems that the logical stability results only correlated with
the much slower, more accurate version if the program was not very stable i.e, had a
lot of global variables and ripple effect. Their approach of getting feedback at design
level meant that steps could be taken to make programs more stable or highlight
specific problems from an early stage. But, there is a tradeoff in that the information

gained was not as accurate as information derived from code level measurement.

2.3.2 Tools for System Ripple Effect

Joiner and Tsai [IT93] used ripple effect analysis along with dependence analysis and
program slicing to produce DPUTE [JT93], a Data-centered Program Understanding
Tool Environment (DPUTE). DPUTE can be used during sofiware maintenance of

COBOL systems to enhance program understanding and to facilitate restructuring and
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reengineering of programs. Program slicing [Wei84] is used to compute intramodule
change propagation. They found that otherwise ripple effect analysis could only be
semi-automatic [JT93], This tool used a browser to highlight variables whose path can
then be traced via forward or backward slicing. Different levels of ripples are shown
in different colors so that users can distinguish them. The variable name, dependence

type and line number in the source file are all displayed.

Problems were encountered during the automation of the intramodule change
propagation stage of ripple effect analysis so a generalized program slicing technique
was used to reduce the size of slices. Ripples were classified by Wang [Wet a/96] into
two categories: a. Direct ripples - those introduced directly by the initial change. b.
Induced ripples - those caused by direct ripple or other induced ripples.

Wang found that the average size of a potential ripple (including both direct and
induced ripples) across a program could contain as much as 32% of the source code.
Direct ripples affected only 1.5% of source code, thus concentrating on direct ripples

was much more manageable, DPUTE only considers direct ripples.

SEMIT [CW87] is a ripple effect analysis tool which is based on both semantic and
syntactic information. It creates a syntax and semantics database for software which
directly links the program's semantic information with its syntax. The syntax analysis
program builds an initial semantic database based on program control flow and data
flow. For each procedure within a program all external data used and modified by the
procedure are represented. Syntactic and semantic information is linked by grouping
relations into dependencies based on "modifies-uses paths". All possible ripple effect
paths are identified by SEMIT, interaction with an expert maintainer is then needed to
define which the more probable paths are. The aim of SEMIT is to provide
maintainers with up-to-date semantic information directly linked to the source code
under observation and then express the meaning of that code, thus improving program

understanding,.
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2.3.3 Methods for Impact Analysis and Ripple Effeet in Object Oriented

Programs

Before this study, there was neither an algorithm nor a tool which produces a
measure for Ripple effect in Object Oriented Paradigm. All previous work in this
domain was mainly concerned on studying and analyzing the impact of changes to

Object-Oriented Software and then using the results for regression testing purposes.

Kung et al. [KGH94] were interested in the system-wide impact of changes for
regression-testing purposes. They described a formal model for capturing and
interfering on the changes to identify affected classes. The model consists of three
types of diagrams: the object relation diagram (ORD), the block branch diagram
(BBD), and the object state diagram (OSD). An ORD describes the inheritance,
aggregation, and association relationships between the classes of a C++ library. A
BBD describes the control structure and interfaces of a member function whereas; an
OSD describes the state behavior of a class. Unlike modeling, these diagrams are
automatically generated from the code and facilitate understanding and changing of
C++ library. So in summary they defined a classification of changes (broadly, data,
method, class, library), impacts resulting from the changes based on the three links
inheritance, association, and aggregation, and defined formal algorithms to calculate
all the impacted classes including ripple effects. However, Kung et al. did not
consider the impact of data change and of method change because it had already been
covered by others and also their study didn’t include any tool or algorithm that

measures or calculate the ripple effect.

Li and Offutt [LO96] presented algorithms to analyze the potential impacts of changes
to object-oriented software, taking into account encapsulation, inheritance and
polymorphism. Their technique allows software developers to perform "what if"
analysis on the effect of proposed changes, and thereby choose the change that has the
least influence on the rest of the system. The analysis also adds valuable information
to regression testing by suggesting what classes and methods need to be retested, and
to project managers who can use the results cost estimation and schedule planning.
They suggested four algorithms that combine to analyze the ripple effect through the

system when a component is being considered for a change. The algorithms calculate
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the transitive closure of each class in "affected class set”. They pick an unexpected
class from the system, check all the classes that are directly related to this class via
encapsulation, or inheritance, and then add all the classes that could potentially be
affected by this class to the "affected class set”. Li and Offutt were interested in the
effects of encapsulation, inheritance, and polymorphism in their algorithms and used
them in calculating the complete impact of change made in a given class. However, Li
and Offutt did not consider changes in inheritance links, nor virtual methods. Also,
the association and aggregation links were not fully covered in their impact

calculation algorithm.

Kabaili in their paper [KKL02] "A Change Impact Model Encompassing Ripple
effect and Regression Testing” have defined a change impact model for object-
oriented systems. This model calculates the impacted classes due to an atomic change.
They had presented an extension of the changed impact model, the first extension they
took into account the classes that are impacted by ripple effect. In the second
extension, they counted classes that need to be re-tested even if they are not directly

affected.

Rajlich in [RAJO1] presented a prototype tool called "Ripples 2" which supports two
processes of propagation of ripple effect in object oriented systems: change-and-fix
and top-down propagation. However, he hasn't taken into consideration any of the
object-oriented feature and their effect while counting ripple effect. He was only
satisfied by checking the main program and marking the changed function and every
class that uses the changed function only. However, the suggested tool "Ripples 2"

doesn't count nor give a measure of the ripple effect.

Black in her paper [Bla01] describes and explains the reformation of ripple effect
algorithm and its validity within the software maintenance process. She suggested an
approximation algorithm using Yau and Collefello's matrix and McCabe's cyclomatic
to develop Ripple effect and Stability tool (REST) which computes ripple effect for C

programs.
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Briand et al presented in [BLS02] a metholodgy and tool to support test selection
from regression testing based on change analysis in object oriented design using
UML. Their main aim was to use change impact analysis as a way for selection
regression testing and for that reason they haven't extend the change impact analysis
to include the object oriented dependency features such as inheritance, polymorphism

and other object oriented features.

Barbara Ryder and Frank Tip [RTO1] used a call graph in finding the change impact
analysis. Their analysis provides a feedback on the symatic impact of a set of program
changes and can be used to determine the regression test drivers that are affected by a
set of changes, Moreover, if a test fails a subset of changes responsible for the failure
can be identified as well as a subset of changes that can be incorporated safely

without affecting any test driver.

2.3.4 Other Work

In [TM94], Turver and Munro survey existing ripple effect analysis techniques. They
find that a weakness with existing ripple effect techniques is that they can not be
applied in the earlier stages of the software lifecycle. To address this weakness they
use Ripple Propagation Graphs (RPG) to model the hierarchical structure of system
documentation with the aim of measuring the impact of a change on the entire system.
A logical model of documentation is created with the relationship consists-of linking
parts of the documentation to each other, for example, Chapter Entity consists-of one
or more Section Entities. This information is then modeled in a RPG, and RPG
crystallization performed to determine the constituent entities of the documentation
[TM94, p.45]:
e Create the hierarchical graph structure of the document.
» Define a set of application themes (data objects in the documentation).
e Analyze each segment entity for themes and for each theme found, create a
theme vertex and attach it to the segment vertex. This records the thematic
dependencies.

s Connect together each co-occurrence of themes.
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Set notation is used to represent all possible connections between documentation
entities, and logical ripple effect analysis used to determine all parts of a document
affected by a change. A probability connection matrix using techniques described in
[Han72] and [Soo77] is also used to produce the probable maximum ripple effect. The
rationale being that past recorded experience can be included in the probability matrix
thus giving the maintenance manager more accurate information about their system.

Canfora [CLT96] propose a method to track the side effects of a maintenance
operation to code by analyzing potential and actual relationships. Relationships
existing in code are split into pofential: exist where unit x may refer to any component
of unit y, and actual relationships which exist where the code of unit x contains direct
or indirect reference to some units of component y. Actual relationships is a subset of
potential relationships and any given maintenance operation can transform a potential
relationship into an actual relationship. The method is based upon the definition, use
and computation of Boolean matrices. It traces ripple effect from a given point in a

program and outputs a list of variables which would be affected by an initial change

due to maintenance.

Several algorithms for calculating the ripple effect are presented in [YLES], they are
presented as not suitable for practical use, thus are for theoretical use only. The
algorithms provide ripple effect calculation for sub-sections of ripple effect analysis

computation e.g. intermodule propagation.
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Chapter 3

Object Oriented Dependences and Change Propagation

The new features in Object Oriented features, like encapsulation, inheritance
and polymorphism make software maintenance more difficult, including identifying
the paris that are affected when changes are made. Although the effects of changes in
object-oriented programs can be restricted, they are also more subtle and more
difficult to detect. For object-oriented systems, it is relatively easy to understand the
data structures and member functions of individual classes, but the combined effect or
combined functionality of the member functions is more difficult. Structured software
desipn is typically based on functional decomposition and emphasizes control
dependencies among different modules. The control dependencies among these
modules are mostly hierarchical, and control dependencies only exist between the
modules; hence, it is relative easy to identify the impacted modules. However, object
oriented design techniques primarily use bottom up approaches. The relationships
among classes form a network graph. Each class could potentially interact with any

other. This makes the relationships among classes more complicated.

These complex relationships between the object classes make it difficult to
anticipate and identify the ripple effects of changes. The instance of a class, the
object, has its data structure, member functions (behavior), and state. The data
dependencies, control dependencies, and state behavior dependencies make it difficult
to define a cost-effective test and maintenance strategy to the system. An object-
oriented system by implication has structure and state dependent behavior reuse, ie.,
the data members, function members and state dependent behavior of a class can be
re-used by another class. There are data dependencies, control dependencies, and state
behavior dependencies between classes in an  Object Oriented program.

Polymorphism and dynamic binding imply that objects can take more than one form,
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which is unknown ontil run time. All these features make object-oriented change

impact analysis more difficult

To summarize, object-oriented systems maintenance is difficult for several reasons
[KGH94]:

1) Although it is relatively easy to understand most of the data structures and member
functions of the object classes, understanding of the combined effect or combined

functionality of the member functions is extremely difficult.

2) The complex relationships between the object classes make it difficult to anticipate

and identify the ripple effect of changes.

3) The data dependencies, control dependencies, and state behavior dependencies
make it difficult to prepare test cases and generate test data to efficiently retest the

impacted components.

4) Complex relations also make it difficult to define a cost-effective test strategy to

retest the impacted components

In order to study and understand how to measure ripple effect in object oriented
programs, we extend previous work and analyze the complex dependencies, relations

and change propagations in Object Oriented code.

3. Object-Oriented Concepts

An object oriented system is composed of objects / classes. An object is composed
of a set of properties, which define its state, and a set of operations, which define iis
behavior. The state of an object encompasses all the properties of the object plus the
current values of each of these properties. Behavior is how an object acts and reacts,
in terms if its state changes and message passing. The state of an object represents the

cumulative results of its behavior. The constants and variables that serve as the
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representation of its instance's state can be called Fields, instance Variables or Data
members depend on the language. Messages result in operations that one object
performs for another. Methods or Member Function are operations that clients may
perform upon an object. A Class is the specification of an object; it is the "blueprint”
from which an object can be created. A class describes an object's interface, the
structure of its state information, and the details of its methods. Objects are runtime
instances of a class. An Abstract Class is a class that only partially describes an

ohject.

» Class A contains class B if the instance of class B is held in one of the
instance variables of the A,

» Class A uses class B if A sends messages to B.

e A class can inherit the instance variables, interfaces, and instance methods
of another class as if they were defined within it,

e The class from which anther class inherits is called parent of superclass.

* The class that inherits from parent is called a child, subclass or derived
class. If a class has more than one parent, this kind of relationship is called
multiple inheritance.

e Association is a semantically weak relationship. It cold be contains, use or

inheritance,

Object-oriented software tends to encode much of the complexity in the
relationships among classes, and understanding these relationships can be quite
challenging. The complex relationships among classes make it difficult to anticipate
and identify the ripple effects of changes. An instance of class has state (via class and
instance variables) and behavior (via methods). The data dependencies, control
dependencies, and state behavior dependencies make it difficult to define a cost-
effective test and maintenance strategy. By implication, object-oriented software has
structure and state behavior reuse, that is, the data members, function members and
state dependent behavior of a class can be re-used by another class. There are data
dependencies, control dependencies, and state behavior dependencies among classes

in the system. Polymorphism and dynamic binding imply that object references can
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refer to objects of different types, and which type is not known until execution. All

these features make object-oriented maintenance more difficult.

3.1 Change Impact Definitions

In structured programming, one thinks in terms of inputs, functions and
outputs. In object oriented programming (OOP), the approach is different -- a message
is typically passed to an object to request an operation on the object. Objects have
methods and data members; the methods specify the operations allowed on the
object's private data, and the data members specify the state information for the
object. Henceforth, we refer to either a method or data member as class member,
When a class member changes, it might impact other classes through message
passing, inheritance, etc...

The basic component in our analysis is the class. A class is composed of member

functions and member variables,

Direct Relationship: There is a direct relationship R between class A and B (ARB) if
A and B have one of the three kinds of relationships: Containment, Use, or
Inheritance. They are defined by [L198] as follows:

Containment: Class A contains class B if B declared as a class member of A.

Use/Reference: There are several ways that a use/reference relationship can be

formed.

s  Containment: If class A contains class B, then class A wses Class B. If A
contains B by reference that means that A contains a reference to B. B's life

span can be longer than A’s.

o Classes passed in as method parameter:If a method m of class A takes
parameters P1 ... Pn, we say class A wuses each pi, i = l..n, and m is in the

reference sets of each of Pi. Pi can be any class and type
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e Classes referenced in the left hand side of assignment: If class A or one of
its members is specified in the left hand side of the assignment statement, A or
its member is defined by all the variables on the right hand side. Thus, class A
(or its member) belongs to the reference set of all those variables on the right

hand side of the equation.

e Return type of method: The return type of a method m is defined by m. m
belongs to the reference set of this return type. Since the parameters may not
be used in the body, and their effect may not direct impact the return type, we
do not consider the return type to be defined by these parameter types. If the
return type is defined by a parameter, it will show up in the analysis of this

method body.

e Variables declared in a method: Any variable that is referenced in the
method m can be considered to be used by m and can be put into the reference

set of m

Inheritance relationship: Class A inherits from Class B if B is declared as a super
class of A.

3.2 Object-Oriented system dependences and type of changes

A dependency in a software system is a direct relationship between classes X
and Y entities in the system X R Y such that a modification to X may affect Y
[WH92].
Wilde and Huitt [WH92] classified dependencies as: (1) data dependencies between
two variables, (2) calling dependencies between two modules, (3) functional
dependencies between a module and the variables it computes, and (4) definitional
dependencies between a variable and its type. We present OO dependences in more
details as follows and classify them into five types of changes that may occur in

Object Oriented code.
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i) Class-to-Class Dependencies:

a) C1 is a direct super class of C2 (C2 inherits from C1)
b) C1 is a direct sub class of C2 (C1 inherits from C2)
¢) C1 is an ancestor class of C2 (C2 indirectly inherits from Cl1)
d) Cl uses C2 (Cl references C2, include direct reference and indirect
reference)
e) C1 comtains C2
- C1 contains C2 by value

- C1 contains C2 by reference

ii}) Class to Method:

a} Method M returns object of Class C
b) C implements method M

iii) Class to Variable:

a) V is an instance of Class C
b) V is a class variable of C

c) V is an instance variable of C
d) V is defined by class C

iv) Method to Variable:
a) V is a parameter for method M
b) V is a local variable in method M

¢) V is imported by M (i.e. is a non-local variable used in M)
d) V is defined by M
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v) Method to Method:

a) Method M1 invokes method M2
b} Method M1 overrides M2

3.3 Types of Changes and their Relationship

The typical changes that may be made to Object Oriented programs, from a

syntactic point of view, can be listed as follows:

i} System level change:

a) Add super class
b) Delete super class
¢) Add sub class
d) Delete sub class
e) Delete an object pointer
f) Delete an object reference
g) Add an aggregated class
h) Delete an aggregated class
i} Change inheritance type
- Change from public inheritance to private inheritance

- Change from private inheritance to public inheritance

i) Class level change:

a) Add member
b) Delete member
¢) Define/Redefine member
d) Change member
I. Change member access scope:
1} Change from public to private
2) Change from public to protected
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3) Change from protected to public
4) Change from protected to private
5) Change from private to public

6) Change from private to protected

I1. Change method:
1) Protocol change:
a) name change
b) parameter change

¢) return type change

[11. Change Data member:
1) Add data declarations

a) Delete data declarations

b) Add data definitions

¢) Delete data definitions

d) Change data declaration
= Change data type
e Change data name

(e) Change data definition

V. Function implementation change

e) Add/delete an external data use

f) Add/delete an external data update
g) Add/delete/change a method call

h) Add/delete a sequential segment
i) Add/delete/change a branch/loop

j) Change a control sequence
k) Add/delete/change local data

I} Change a sequence segment
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Inheritance is assigned the greatest impact power, with containment relationship as
medium and use relationship the least, because we think the impact power of
inheritance is greater than the impact power of containment, and it is greater than the
impact power of use. Inheritance is considered to have the highest impact power
because super-classes define subclasses behavior. Any changes in the public and
protected levels of the super class will impact its sub classes. A containment
relationship implies the use relationship with additional constraints, like the life span
of the contained object may be the same as that of the container class. The contained
class constructors and destructors are always called by the container class. So the
impact power of containment is considered to be greater than that of the use
relationship. Since the coupling between inheritance is much higher, its impact power

is assigned a higher value than that of containment and use.

3.4 Object Oriented Features and Relationships:

Although objects are more easily identified and packaged, however, features
such as encapsulation, inheritance, aggregation, polymorphism and dynamic binding
can make the ripple effects in Object Oriented programs more difficult to understand
and handle than structured programs and will make the maintenance process more
complicated. Therefore, 1 have explored each object-oriented feature listed above and

its relations with ripple effect

3.4.1 Encapsulation

Encapsulation provides an effective way to enforce information hiding
because the data aspect of an object may made private and access to these private data
can be achieved only through operations of the object i.e. through the methods
defined within the object. Therefore, this way of implementation within one class will
have no ripple effect on other classes and on the contrary the effect of change can be

minimized.

Note: in the presence of encapsulation, the only way to observe the state of an object
is through its public methods.



3.4.2 Inheritance

It's the process by which one class can acquire the properties of another class.
Therefore, a new class can be defined in the object oriented paradigm without starting
from the beginning. As a result, super class can be reused by the subclass. Methods
inherited from a super class must be retested in the context of the subclass because a
change in one of the method will have a ripple effect in the subclass. Derived class
reuses both data members and the function member of a base class and therefore, a

change in the data/function member will make a ripple effect to the derived class.

3.4.3 Polymorphism

It's the ability to take more than one form. An attribute may have more than
one set of values and an operation may be implemented by more than one method.
One problem of polymorphism is that we couldn't know which method or value will

be used before runtime.
3.4.4 Dynamic Binding

Is the method that implement an operation is unknown until runtime. As a

result, data binding feature makes the ripple effect measurement more difficult.

3.5 Change Propagation

Change propagation in Object Oriented programs can be classified into intra-

class propagation and inter-class propagation.
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3.5.1 Intra Class change propagation
Is the propagation inside a method's class: data element inside a method/function

inside the class:
'1} Local Variables:

a) The variable is defined in an assignment statement.
b) The variable is assigned a value read from an input.
¢) The variable is an input parameter to module m.

d) The variable is an output parameter from a called module m.

2) Global / or inherited variables:

a) A variable with modifier "private”" is global to all the methods in the class

but not visible outside the class.
b) Inherited variable.

3) Global or inherited methods.

4) Inherited methods/variables (may be included by global variables/functions)

3.5.2 Inter-class change propagation
Data dependency/relationship among different methods and functions inside

and outside the class,

1) Global variables.

2) Global methods.
3) Public/ protected members of a super class in case of inheritance.

4) All Public members of any class inside the system

5) Variable is an input parameter to a called method/class (via a message).

6) Variable is an output parameter of a method.
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3.5.3 System dependency propagation

Classes interaction with each other.

3.6 Metrics and the Object Oriented Ripple Effect:

Keremer and Chidamber introduced complexity metrics for object-oriented

systems in their paper [CK91] and because the ripple effect is a measure of

complexity, | had studied these metrics and classified them into inter-class and intra-

class metrics after 1 added some other object-oriented complexity metrics. | had

explored each metric alone and its relationship and effect on ripple effect

3.6.1 Inter-Class Metrics:

Depth of Inheritance tree (DIT): The depth of a class within the inheritance
hierarchy is defined as the maximum length from the class node to the
root/parent of the class hierarchy tree and is measured by the number of
ancestor classes. The higher the DIT of a class, the more ancestor classes it
has. Deeper trees require greater design complexity since more methods and
classes are involved. A subclass does not only depend upon its direct super
class, but also upon its ancestor classes as it inherits their features. This
increases the ripple effect of subclasses because changes to their ancestors

may necessitate changing them.

Number of children (NOC): NOC is the number of direct descendants
(subclasses) for each class. Classes with large number of children are
considered to be difficult to modify and usually require more testing because
of the effect on changes on all the children. The more subclasses a class has,
the higher its incoming dependencies since these subclasses depend upon it.
Since only the outgoing dependencies of a class affect its stability and thus
having a greater ripple effect, NOC metric is not expected to have correlation

with class stability nor ripple effect.
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. Coupling between objects (CBO): CBO is defined as the count of the classes
to which this class is coupled. Coupling is defined as: Two classes are coupled
when methods declared in one class use methods or instance variables of other
class. High CBO of a class means that this class depends upon many classes
(outgoing dependencies) and/or many classes depend upon it (incoming
dependencies). The outgoing dependencies of a class reduce its stability since
they represent external influence to make it change and as a result increase the

ripple effect.

Response for a class (RFC): RFC is defined as number of methods in the set
of all methods that can be invoked in response to a message sent 1o a message
sent to an object of a class. The higher the RFC of a class, the higher the
number of internal and external methods available to this class. The external
methods make this class depends upon the class in which these methods are
defined. This in turn may require modifying this class whenever these external
methods are modified. So this decrease class stability and increases class

ripple effect.

Number of children in a sub tree (NOC-ST): When some component of a
class is changed, it may affect not only its children but the whole sub-tree of

which the changed class is the root.

CBO No Ancestors CBO-NA: It is same as CBO but the coupling between
the target class and its ancestors is not taken into consideration The coupling
between the target class and its ancestors, taken into consideration by CBO, is
irrelevant for change impact, since the ancestors of the target class will never

be impacted. To eliminate such "noise", ancestors are excluded in CBO_NA.

CBO-IUB: (CBO is Used By: the part of CBO that consists of the classes
using the target class): (the part of CBO that consists of the classes using the
target class) the definition of CBO merges two coupling direction: classes
using the target class and classes used by the target class. Very strong

correlated with change impact good indicator for changeability in system.
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8. CBO-U (CBO Using: the part of CBO that consists if the classes used by the

target class): introduced as a consequence of CBO_IUB, to cover the part of

CBO not considered by CBO_IUB.

3.6.2 Intra-Class Metrics:

Weighted Methods per class (WMC): WMC measures the complexity of an
individual class. The larger the number of methods in a class, the greater the
potential impact on subclasses, since these subclasses will inherit all the
methods defined in a class. High WMC of a class suggests that this class has
many methods and/or its methods have high complexity. This increases the
likelihood of having some methods that use methods and/or instance variables
of other classes. If so, this makes this class depends upon other classes and

thus increase its ripple effect (reduces its stability).

Lack of cohesion in method (LCOM): LCOM is defined as the number of
different methods within a class that reference a given instance variable. High
LCOM of a class suggests that this class is weekly cohesive and does not
promote encapsulation. This increases the likelihood that this class be

dependent upon other classes, which increases the ripple effect.

The more a class is used through invocation of its methods and outside reference to its

variable, the larger the impact of change to such a class and therefore, the higher the

ripple effect.
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Chapter 4

Counting Ripple Effect as a Matrix Product

The purpose of this chapter is to give a precise definition of the calculation of
ripple effect and logical stability of object-oriented programs. The computation of
ripple effects for object-oriented programs is done in 2 levels: code level and
architecture level. Two fundamental ideas in the computation of ripple effect at the
code level are: intra-class and inter-class propagation. Whereas, in the architecture
level, we calculate the interactions between the classes with each other at the system
level. This chapter gives a detailed description of what they are and the way in which
they are calculated. This is followed by the computation of ripple effect for an

example program to clarify the use of the ripple effect algorithm in practice.

4.1 Intra-class Change Propagation

The computation of ripple effect is based on the effect that a change to a variable will
have on the rest of a program. Consider the lines of code contained in C, shown in
Figure 4.1. A change to the value of 4 in line 1 will affect the value of & in line I,
which will propagate to a in line 2. In line 2 @ will affect d which will then propagate
to  in line 3. Propagation of change from one line of code to another within a class is
called intra-class change Propagation. Clearly, propagation takes place from

definitions to uses of variables and via assignments.
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Method m1(i) L.

Method m2()

© X=ml(y);

Figure 4.1: Example code of class C

Class C {

int a;

Public int m1() {
int d;
a=d: /line 1
d=a; /line 2
return d; // line 3

Public void m2() {
int y;

int x=ml(y);

z=ag;

Public void m3() {
int f;

=a;

example 4.1
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Starting points for intraclass change propagation such as @ in line (1) can be thought
of as "definitions", the variable is being defined or given a value. Propagation then
emanates from the defined variable through the class across the class boundary and

into other classes (inter-class change propagation).

Intra-class ripple computation due to a change in a variable is based on the following
five conditions: (refer to figure 5.1 example.java)
1. The variable is defined in an assignment statement. For example 'caverage' in

30 caverage = total/ccounter;

2. The variable is assigned a value which is read as input. For example 's'in

17 s = in.readLine();

3. The variable is an input parameter to method m. For example 'ccounter’ in

28 Private float calcmean (float ccounter)

4. The variable takes returned value from a called method. For example counter:

7 Counter = values();

5. The variable is a global or inherited variable. For example ‘fotal’ in

30 caverage = total/ccounter;

In calculation of intra-class propagation, if a variable is global to the method, to
determine whether it qualifies as a starting point for matrix V., will depend on the
visibility rule of the particular object-oriented language used. For example, if a
variable with a modifier private is "global” to all methods in the class but not visible
outside the class. Therefore, the ripple computation engine can assume that if java
code is passed we can treat all variables no defined locally in a method as being
global to the method. The computation engine does not need to be concerned about
the underlying visibility rules or the data hiding of variables within each class. In
most statically complied procedure languages, it can before run-time which piece of

code will be entered after the invocation of a function. A characteristics of all object-
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oriented languages however, is that the binding of at least some calls to a particular
function code only takes place at runtime. Different object-oriented languages provide
different mixes of static and dynamic binding. In Java for example, methods are
virtual by default, which means that calls to all methods will be bounded at runtime.

In addition, in Java where a method is not abstract or part of an interface and is not
overridden by a method with the same signature in a subclass which implies that we
can able to determine before runtime the method code executed when the method is
invoked. As a result, the ripple effect computation engine can determine such methods

by methods by examining the source code class specifications of the system.

Intuitively only global values on the right hand side of assignments should count. Any
variable occurrence on the left hand side is receiving a value from the variable on the
right hand side of the assignment, thus whether it is global or not is irrelevant. In this
instance if average is global this specific occurrence is not going to affect anything. A
(-1 vectar ¥, is used to represent the variable definitions in method m. Variable
occurrences that satisfy any of the above conditions are denoted by "1" and those
which do not by "0". We shall use the notation x (x/" ) to denote a definition (use) of
variable x at line i. For example, @ means variable @ is defined in line / and @ means

variable a is used in line 2. Vector ¥, for the code in our example in Figure 4.

{where a is assumed global) is therefore:

d u o u u
ap d d; a; dj

V= { L[ @ 1 1 0 )

A 0-1 propagation matrix Pm can be produced to show which variable values may
propagate to other variables within method m. The rows and columns of Pm represent
each individual occurrence of a variable. Propagation is shown from row i to column
J. For example, the propagation from a in line 2 to 4 in line 2 is shown at row 4
column 3 and not at row 3 column 4.That is P is not symmetric. For the code of

example 4.1 we get the following matrix;
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af 4 4y ay  df

/ 3
a 1 0 1 1 1
a'l 1 1 | | I
P = 4 0 1 0 1
ay| 0 0 1 1 !
dy 5 0 0 0 0 | ;

We observe that Pm1 is reflexive and transitive; that is, every variable occurrence is
assumed to propagate to itself, and if v1 propagates to v2 and 2 propagates to v3 then
vl also propagates to v3. Pm therefore represents the transitive closure of variables
within module m. In graph theory terms we conclude that Pml represents the
reachability matrix of a directed graph [PY76]; that is, it shows how element (i.e
variable/line) can reach any other element in the code, The nodes of the graphs are the
variable occurrence represented in the vector V and the edges are given by the direct-
change-propagation relations: (a) change propagates either from the right-hand side of
an assignment to the lefi-hand side, or (b) it propagates from the definition of a
variable to a subsequent use of that same variable. This directed graph can be
represented by an adjacency matrix R. The propagation (reachability) matrix is then

given by the union of I, R, R?, ... R", where n is the number of variable occurrences.

4.1.1 Decomposition of Matrix Pm

Matrix Pm represents intra-class change propagation. This is clearly a transitive
relation because if change propagates from variable occurrence w to v, also from v to
vi, then a change in occurrence wi will propagate to w via v . Thus, as we observed
earlier, Pm is the matrix of a transitive relation and represents the reachability matrix
of some basic relation Bm. To determine Bm is not difficult: change propagates either

from the right-hand side of an assignment to the lefi-hand side, or it propagates from
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the definition of a variable to a subsequent use of that same variable. These two
modes of propagation are referred to as ‘assignment' and 'definition/use’, respectively.
If we treat the two as different relations, represented by matrices Am and Dm,

respectively, then we see that Bm = Am + Din.

r\ Assignment
Mx=y;

Definition / use
(2)y=x+1;

Figure 4.2: Assignment and Definition/ use

To explain this we turn to Figure 4.2 where information flow from one variable
occurrence to another is shown using arrows, variable occurrence x takes its value
from y in line 1, thus x,y is an assignment pair. Information about such pairings is held
in matrix Am. The definition of x in line 1 is used by x in line 2. This is a
definitionfuse association. Information about definition/use associations is held in

matrix Dm,

The combination of information from assignment and definitionfuse gives us
information about the flow of values from one variable to another within a class.
From this information we can work out which variables would be affected if we
changed any particular variable occurrence. The assignment matrix Am which holds

information about all assignment pairings for our example code is as follows:
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X b i ¥ X3
f N
¢ 0 o 1 |
] 0 0 0
Ay = )
yil o o o 0
x3 | O 0 1 0
.8 A

{ Y, Assignment
(1) x=y;

\ Definition / use
Assignment

(2) y=x+1;

Figure 4.3: Assignment and Definition/ use information held in Matrix B

The definitionfuse association matrix D is as follows:

o o u
x:! ¥ ¥2 X2
P ‘\
x;’ 0 0 0 ]
o 0 0 ] ]
D = dl
y; 0 4] 0 0
X1 0 0 0 0
N A
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Matrix Am and matrix Dm have all variable occurrences as rows and columns, even
though in 4m only defined variables are needed as columns and in Dm only defined
variables are needed as rows. The sum of these matrices then gives us matrix Bm
representing direct intra-class change propagation. The information now held in

matrix Bm is also shown in Figure 4.3.

d U o o
Xy ¥y ¥a X3
' b
xi | @ 0 0 1
1 0 0 0
o
yil o 0o o o
x“] o 0 1 0
\ ¥,

We can now find the reachability matrix (equivalent to the transitive closure) for B, namely

P, using:

Pm=IvB vBv.. vE

n = number of variable occurrences, in this case four,

The reachability matrix shows all possible links between any variable occurence and any
other variable occurrence within the module. From the information now comtained within
matrix Z any change to a variable occurrence can be tracked throughout the class and the

ramifications of its change calculated.,
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o u o
Xy Yi Y2 Xy

( A
x| 0 1 I
p = yi | |1 1 ! |
e 0 | 0
x5 | 0 0 1 I
\ /

4.1.2 Problems in calculating inter-class propagation

When tracing back to where the object was originally created, it is sometimes possible
to determine before runtime the actual method executed. However, in some cases, it is
sa difficult and sometimes impossible.
Example:
Where a super type variable is passed as a parameter to a method suppose, for
example, that classes Al and A2 implement interface 1A which specifies the signature
of method method1.
In the method bellow:
Void someMethod (1A anlA) {

anlA.method1();

It is not possible to determine which version of method1() will actually be executed.
this depends on the class of the object to which anlA refers. However, for the purpose

of ripple effect calculation, the code could be re-written as follows:

void sometod (1A anlA) {
if (anlA instancof” Al)
((Al)anlA).method();
else
((A2)anlA).method2(); }
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4.2 Inter-class change propagation

Propagation across classes from one method to another is called inter-class change
propagation. A change to a variable can propagate to other method if: (refer to figure

5.1 example.java)

1. The variable is an inherited or global variable. For example total:

30 caverage = total/ccounter;

Intuitively only globals on the left hand side of an assignment should count - this
specific occurrence of fotal is not propagating to anywhere, but we are sticking to Yau
and Collofello's definition.

2. The variable is an input parameter in an inter-class message. For example counter:

B Average = object.calemean(counter);

3. The variable or object is returned by a method m to a method in another class. For

example veounter;

26 return (veounter) ;

For example, in the code of method ml in Figure 4.1, & clearly propagates to any
method calling ml. If @ is globalfinherited then its occurrence on the lefi-hand-side of
the assignment in line '1" will cause propagation to any method using a. Suppose that
the code constituting method ml is called by another method m2, that a is
inherited/global and method m2 uses a, and that yet another method m3 uses @ and 4.
The (ijith entry is 1 il variable ¢ propagates to method j. We can represent the

propagation of these variables using a 0-1 matrix Xml:
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0 | |
0 l 1
VotPmiXs= (1 0110) E 5 1 = (013)
0 0 1
0 0 1
., /

In this example, we can infer from the results of the matrix A = Fm1Pm1Xm1 that

there are 0 propagations from method m/ to methad m1, 1 to method m2 and 3 to m3.

4.3 Complexity measure logical stability and ripple effect

A complexity measure is factored into the computation by Yau and Collofello
so that the complexity of maodification of a variable definition is taken into account.
Matrix C represents McCabe's cyclomatic complexity [MeC76] for the methods in our
cade, shown in example 4.1 (the values for m2 and m3 have been chosen at random)
{We can also use the Average Method Complexity for object oriented programs which is:

1 [
AMC = =) Ci
[
Where Cl...Cn are the static complexity of methods we can measure the static
complexity using a static complexity metric such as McCabe's cyclomatic complexity

metric)

The matrix A of Section 4.2 yields a count of the amount of propagation that ripples
across classes. However, the effect of change is not identical in all classes. To capture
the differences, we propose factoring in a complexity measure for each class in order
to give a more reflective measure of the ripple effect. This complexity measure can be

based on the metrics discussed in chapter 3.
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We propose using a weighted sum of these metrics for each class/method as follows:
{a.HIT + b.RFC + ¢.CBO +d.WMC + e, LCOM) / 5

where the coefficients a-e are normalization coefficients that aim to yield comparable

dimensions for the five metrics. A simple way to determine these coefficients can be

to make them all equal to the reciprocal of the average of the total sum of all five

metrics over all classes in an OO program.

Assuming that the complexity values for the example used in Section 4.2 are

computed, we obtain a complexity vector, C (for the three classes):

' ™
my |
C= ms; 1
ms 1
ot A
The product of Fm1ZmlXm] and C is: 2
]
Vml.Zml.Xml.C=(013) | 1 i
1
s "y

This number represents the complexity-weighted total variable-change propagation
for method ml. We normalize this number by dividing it by the number of variable
definitions in method m1 (1/ |Fml|} to give the mean complexity-weighted variable-
change propagation per variable definition in method m1. In our example, the number
of variable definitions in m1 is 3, |[Fm| = 3, (equals number of 15 in Fml). Therefore,
ripple effect for method m/ is defined as:
RE =(Vm1.Pm1.Xm1.C)/3 =4/3 = 1.33

The logical stability measure for method m/ is defined to be the reciprocal of the
ripple effect value. In our example, LS = 3/4 = 0.75. These numbers for the ripple
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effect and logical stability should be read as relative and not absolute. That is, they
can be used to compare RE and LS values of different methods in different classes in
the same program with each other.

Hence that no class with a Ripple Effect of zero was found in this study, but if there

were we could adopt a definition of Logical Stability being 1/(1+RE ).

4.4 Architecture Level

The computation of the ripple effect at the architectural level is based on the
effect that a change to a single class will have on the rest of the program. A high-
level change can be an internal code change in the class, but is considered as an
overall class change. Alternatively, it can be a change in one of the relations if this
class with other classes in the program. That is, for the architectural level, we do not
consider the data flow level. A 0-1 vector Ve can be used to represent the classes
definitions in a program. In this vector, a class in the program that has a direct effect
on other classes is denoted by "1" otherwise it is denoted by "0". A direct effect
includes inheritance, aggregation or a directed association relation (i.e sends value).
For example, assume a program with the following architectural characteristics:

Class |; Class 2 extends class 1; Class 3 extends class 1; Class 4 extends class 3;
Class 5 extends Class 2; then,

Cl € ¢ ¢4 C5
Ve=(0 I | 1 0 )

Also, a class relation matrix Rc can be determined from the class graph diagram such

that classes are the nodes of the graph and the directed relations define the edges.

A 0-1 propagation matrix Pc can be produced to show which classes will propagate to
other classes within the program. Pc is computed from Rec in a similar way to that
described in chapter 4 for Pm. Propagation is shown from row i to column j; for

example:
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Cl C2 C3 C4 C5

4 ™
Cl ] ] 1 ] 1
2 0 1 0 1] ]
Pec= C3 0 0 1 1 0
C4 0 0 ] 0
C5 4] 0 ] 0 |
\, A

The amount of propagation is given by the matrix product Ac=VcPe. For our

example,
. 3
1 | | 1 |
0 | 0 0 1
VePe= (11110) [ o o | | o [Faz2321)
0 0 1 | 0
0 0 0 ] |
Y A

Now we multiply it by the complexity measure. In object Oriented the Weighted
Method per class (WMC) is used to measure the complexity of a class. The WMC is
calculated as the sum of McCabe's cyclomatic complexity (or Halstead Complexity)

of each local method. Assume that the vector class complexity measures, C, for our

example is
cif 3 )
c2] 2
€ - cs| 2
C4 ]
C5 ]
. A
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VePeC = (12321) . = 16

This number represents the complexity-weighted total class-change propagation for a
program. We now multiply this by the reciprocal of the number of class definitions in
the program (= number of 1s in Ve¢) to get the mean complexity-weighted class-
change propagation per class. That is, the ripple effect for program P is defined to:
RE=16/4 = 4 Further, the logical stability measure for Program P is defined to be its
reciprocal: 4/16 = 0.25
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Chapter 5

Examples

It is desirable to automate the computation of ripple effect measure as the
process is complex and tedious by hand. But even when automated, computation of
ripple effect can be time consuming. Yau and Chang [YC84] give an example of a
2000 line program's stability measure taking thirteen hour of CPU time to compute.
Problems were encountered during the automation of intra-class change propagation
stage of ripple effect analysis for which program slicing was used, ripple effect could
otherwise only be computed semi-automatically. In this chapter 1 described in details
how to compute the ripple effect and logical stability to 2 classes: example.java and

calculations.java using the techniques described in section 4.

5.1 Computing Ripple Effect for an Example Class

The following is an example of the computation of logical stability of a
program called Examplejava. A listing of the program source code is given in Figure
5. The following algorithm can be used to calculate ripple effect and logical stability.
It is split into eleven separate steps; steps one to nine should be followed iteratively

for each method, steps ten and eleven for the class as a whole.
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1: import java.io.*;

2: import java.awt.¥;
3: Public Class example

4: Float total ;

§: Public Void main(} {

62 Float average, power, counter;
irH Counter = values():

a: Average = calcmean (counter);
9: Power = calpower ();

10: Output (average, power) ;

12: Private float wvalues() |

13: float vnumber;

14: float vcounter = 0;

15: String s = new String();

16: System.out.println("Enter a value or -1 to calucuale mean:"};
17: s m in.readLine();

18: vnumber = Float.valueOf(s).floatValue();

19: for (:; vnumber!=-1; vecounter=vcounter+l)

20: {

21: total = total + vnumber;

22: System.out.println("Enter a value or -1 to calucuale mean:");
233 s = in.readLine() ;

24 vnumber = Fleoat.valueOf (s).floatValuel(};

25+ |

26: return (vcounter) ;

27: )

28: Private float calcmean (float ccounter) |

29 float caverage;

30: caverage = total/ccounter;
31: return (caverage) ;

3z2: 1

33: Private float calcpower() |

34 float xpower;

35: spower = powltotal,3);
36: return (xpower) ;

37: )

38: Private void output (float ocaverage, float opower) |

39: System.out.println("A total of values:", total);

q0: System.out.println("B = mean of values:",caverage);
41: System.out.println{"C = A cubed:", opowertotall);

425 )

431)

Figure 5.1 Example java
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STEP 1 Make a list of all occurrences of variables (not including variable
declarations) for each method in the order in which they appear in the source code.
For example, in method values the list would be:

veounter vaumber, vaumber, veounter, veounter, total total, vnumber,vn umber, vcounter
STEP 2 Form Boolean vectors for each method. We give Fvalues as an example,
with *1' in the vector denoting that the variable occurrence satisfies one or more of the

five conditions specified in section 4.1, and "0' that it satisfies none. By inspection of

the source in example. java

d o d d u d u
vely Vnjg VRjp Vejg Ve foty foly VR VRy Vey

1""'Fva1|Jv.‘zs = ( 1 1 U 1 U 1 1 0 1 0 ]I

STEP 3: Construct matrix Zm for each method:

o il da i d u d
VCjy VNjg Vg VCjg Vg oty oty vnh, VR VCag

5
I
=
=
= R = N
=
=
=
= O

tot3,

o o o 9o o o O O
o o o O

2
s
o o O o o o o oo

oo S 2 O o O O
o o o o o
o Qo o O

=
=
=
=




STEP 4 : Construct matrix Xvalues:

Main values calemean  calepower output

vn :': 0 0 {0 0 0
vn iy 0 0 0 0 0
vn Tﬁr 0 0 0 0 0
Ve iy 0 0 0 0 0
V€ g 0 0 0 0 0
tot4, 0 0 | | |
ot 3, 0 0 0 0 0
vny, 0 0 0 0 0
v, 0 0 0 0 0
VE 5 \ 1 0 0 0 0 /

STEP 5: Construct matrix C representing the McCabe complexities for the methods in

this class which are as follows:

main 1
values 2
calcmean
calcpower I

output l
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STEP 6: Find the Boolean product of the matrices formed in STEP 3 and STEP 4

ZvaluesXvalues:
/1001100001y 00000\ [ \
10000
01100111020 00000
00111
0010000O0O0O 0Doo0oo0o
00000
pDoo0O1 100001 o000
1 0000
0001100001 00000
= 10000
0000011000 00111
o011 11
0000011000 00000
o001 11
0000O0CT1T 1100 00000
00111
00106011110 Doooo
1 000D
l\DUGGGDﬂU{}])K!{}Dﬂﬂ) k\ }J
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STEP 7: Find the product of the matrices formed in STEP 2 and STEP 6,

VealuesZvaluesXvalues:

(2 0 4 4 4)

—
=
L
L
L=

S

o
)
=
=1

il

STEP &: Find the product of the matrices formed in STEP 2 and STEP 35,

VvaluesZvaluesXvalues:

(2 0 4 4 4) = 14
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STEP 9: Divide this figure by |Vmj|, the number of variable definitions in class C to
give the measure of ripple effect for the module. Looking at Fvalues we can see that
there are 6 'l's in the vector, we therefore divide the product of the matrices by 6
giving:

14/6=2.33

The Ripple Effect values for the other methods are:

REmain=1.33

REcalemean = 1

REcalcpower= 1

REoutput =0

The Logical Stability for method values is therefore 6 / 14 = 0.43 and for the other

methods in class example.java:

LSmain =0.75
LScalemean = 1
LSealcpower = 1
LSoutput =0

STEP 10: Calculate the Ripple Effect for the class as a whole using:

1 & Vmi.Zmi. Xmi.C
n,-g‘ | Vi |

Where m = method and » = number of methods in class.
Therefore REPexample:java = 34/30=1.13




STEP 11: Finally the Logical Stability measure for the Class Examplejava is the

reciprocal ripple effect measure:

LSP = 1/REF = 30/34 = 0.88

The final results are shown in table 5.1,

Class example.java  Line of Cade  Ripple Effect  Logical Stability

N SN X 12 SR S OSSR A0 0.75
‘Valugs s g 21 sk ettt in o AR St 04
i 'Ca]cmean 3 I]. .: [
"'::. Output 3 ey 0
Class ﬁesults 26 1.13 (.58

Table 5.1 REA results

Table 5.1 shows the impact in term of increased ripple effect during perfective and
adaptive maintenance where the functionality of a program is being modified or its
environment has changed. If the stability is poor, the impact of any modification is
large and this means the maintenance cost will be high and reliability will suffer.

The ripple effect shows us how the methods/classes are stable. In our example, the
method values have the highest ripple effect 2.33 and this means that this method is
the least stable in class example with logical stability 0.43. The method output has
zero ripple effect and as a result it has zero logical stability. This means that whatever
we change in class examplejava the method output is always stable and it not going
to affect other methods inside the class. As ripple effect increases the logical stability
of this program decreases which means that methods with higher ripple effect will
face more problem when being updated. In our example, updating the method Values
will have an impact on methods calcmean and calcpower and as a result the logical

stability of the whole class will be decrease.
The matrix we used in calculating the ripple effect and logical stability are useful and

can describe each part inside the class which make us understand it better. Matrix 2

represents the variables' propagations to each other inside a certain method for
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example, vnumber propagate to total in line 21. On the other hand, Matrix X
represents the variables propagation to another method within the same class for
example, variable total propagate to methods calemean and calpower Inter-class
propagation of all variable occurrences inside a class can be found by finding the
Boolean product of Z*X. Whereas, V*Z*X show propagation to each method from
variable occurrences inside the same class for example, we see that there are 2
propagations to method main, 0 to method values, 4 to method calcpower, 4 to
method calemean, and 4 to method output. Finally, V*Z*X*C represents the
complexity weighted total variable definition propagation for each method.
The ripple effect measurement can highlight high ripple effect methods as a serious
problem. These highlighted methods can be used later in regression testing.
According to [KGH94] the regression process consists of 5 phases:

1. Identification of changed classes
Identification of affected classes
Generation of class test order

Selection of test cases

s W

Test cases modification and generation,

The ripple effect can be used to identify the impact of change for each class. Relation

between ripple effect and regression testing is discussed in chapter 6.
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5.2 Counting Ripple effect for Calculations.java class:

The following is another example used in the computation of ripple effect and
logical stability of a class called Calenlations java. A listing of the class source code

is given in Figure 5.2

STEP 1: Make a list of all occurrences of variables (not including variable
declarations) for each method in the order in which they appear in the source code.
For example, in method addnum the list would be:

number, number, sum, sum, x, sumafSquares, sumofsquares, x.

STEP 2: Form Boolean vectors for each module. We give addnum as an example,
with "1' in the vector denoting that the variable occurrence statisfies one or more of
the five conditions specified in section 3.1, and "0 that it satisfies none. By inspection

of the source in calculations.java

d u d # i d i i
n? I‘l? Suma Sums xg 50’59 3059 xg

Vaddoum = ( 1 | 1 1 0 1 | 0 )

STEP 3: Construct matrix Zm for each method:

w
=]
wa
-]
L= T = = = = =
o o o o O O
= = = =
o o o O
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STEP 4 : Construct matrix Xagdvum:

addnum getaverage getdeviation getsumsquares avgpower main

§ \

nd 0 | I 0 0 |
na 0 0 0 0 0 0
sUMmg 0 1 1 0 0 1
sumg | 0 0 0 0 0 0
Xg 0 0 0 0 0 I
505 g 0 0 1 1 0 |
sosg | O 0 0 0 0 0
Xg 0 0 0 0 0 |

\ /

STEP 5: Construct matrix C representing the McCabe complexities for the methods in

this class which are as follows:

addnum ( | \

getaverage 1
getdeviation 1
getsumsquares ]

avgpower |

main \ 2 )
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STEP 6: Find the Boolean product of the matrices formed in STEP 3 and STEP 4
&m‘d}l i J addmim .

f1o000000Y\ f 011001 Y\ [ 011001
011007111 000000 011001
00100000 011001 011001
00011000 000000 011002
00011000 00000 i 001102
00000110 001101 001101
00000110 000000 001101
\000001 11/ 000001 J \ 001102

STEP 7: Find the product of the matrices formed in STEP 2 and STEP 6,

V actchranZoadanumXaddwinn:
(0110 0 1\
011001
011001
(1 1 1 1 0 1 1 0)y011002|=(0 4 6 2
001102
001101
001101
I\DIDIIEIEJ
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STEP 8: Find the product of the matrices formed in STEP 2 and STEP 5,

Vfdlirrumzm'fdrmmxmﬂnum:

(0 4 6 2 0 7) 26

STEP 9: Divide this figure by |Fmj|, the number of variable definitions in class
Calculations to give the measure of ripple effect for the method. Looking at Faidnum
we can see that there are 6 'l's in the vector, we therefore divide the product of the
matrices by 6 giving:

26/6=4233

The Logical Stability for method values is therefore 6 /26 = 0.2
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I: import java.io.*;

2: import java.awt.*;

k Public class calculations |

d: int m = 0;

5 double sum = 0.0, sumofsquares = 0.0;
B publie void addnum (double x) |
7 no= n+ly

8: sum = sum + X;

9 sumofaquares = sumofsquares x“x;
10: 1

11: Public double getaverage () |

123 Double average;

13; Average = sum/number;

14: return f(average);

15: }

16: Fublic double getstandardbDeviation() |

17: bouble deviation;

18: Ceviation = (({sumofguares + sum*sum/n)/nj;
19: Eeturn math.sqgrt (deviation);

20: I

21: Public double getsumofsquares|() |
22: return (sumofsquares):

23: J

24: Public double avgpower({} |}

25: double powers, averagepower = 0;
26: averagepower= getaverage();

27: powers = pow (averagepower,2);
28: return (powers);

29; |

30: Public static void main (string args([]) |

31: double m_average, m StandardDeviation, m_sumofsguares,

Averagepower
32: for (int 4 = 1; i <=100; i++) addDatum(i):

33: m_average=getaverage():

34 m StandardDeviation =getstandardDeviation();
35; Humbers = n;

36 m sumofsquares = getsumofsguares();

37 Averagepower = avgpower():

38: i

Figure 5.2 calculations.java
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Chapter 6

Future Work

Previous measure and tools developed to produce ripple effect measures for
procedural software have used Yau and Collofello's algorithm which is based on set
theory. It was proved difficult to write simple software using this algorithm; ripple
effect tools have either taken an excessive amount of time to produce ripple effect
measures or needed some user intervention to make critical decisions about the source
code. In our approach, we used matrix arithmetic which simplified the process of
ripple effect computation. Each matrix used within the algorithm holds a particular
type of information about the sofiware under scrutiny. This makes it easier to
understand what each part of the algorithm means and how the ripple effect is being
computed. Initial steps we made to automate our approach and produce ripple effect
for object-oriented tool (ROOT) however, for it to be used in industry as a fully
working measurement tool some further work needs to be carried out. Facilitation of
ripple effect computation for other Object-Oriented programming languages besides
Java should be considered in the future. Further work will also include investigation
into the feasibility of measuring ripple effect at different levels of abstraction. So far
we have looked at computing ripple effect using source code at class and architecture
level. Ripple effect computed at subsystem and system level could provide valuable

information for use by both developers and maintainers.

As a future work we suggest to develop a parser that will pick up the data from
object-oriented code and used it in calculating the ripple effect automatically. The
parser also needs more work to enable all java programs of any version to parse. As it
has proved difficult in the past to produce ripple effect automatically for Object-
Oriented Programs, no comprehensive studies have as yet been carried out using

automated ripple effect tools to discover how much use ripple effect is to maintainers.
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6.1 Ripple Effect of Distributed Systems

Computation of ripple effect for distributed systems could be our next target.
Initial investigation was made to study if it is both meaningful and feasible to measure

the ripple effect for distributed systems.

6.2 Ripple Effect and Regression Testing

The objective of the ripple effect is different from that of regression testing.
Regression testing ensures that those features in system functionality that should not
be changed remained unchanged after a code change. On the other hand, the ripple
effect analysis is to ensure that those parts of the software that need to be changed due
to dependency to the changed code are identified and changed. The ripple effect
should be performed in addition to regression testing because ripple effect analysis
and regression testing complete each other. Even though the objective of the ripple
effect analysis and regression testing are different, it is possible to use ripple effect to
minimize test cases in the regression testing where the ripple effect is used to identify
those parts of the software and their corresponding test cases that are potentially

affected (Impact Analysis),

The ripple effect analysis can be an integrated part of regression testing and
regression test cases can be selected based on the ripple effect analysis results.
For example, Scenario based functional regression testing which is based on end-to-
end integration test scenario.
1) The test scenarios are represented in a template model that embodies both test
dependency and traceability.
2) Traceability information shows affected components and associated test
scenarios and test cases for regression testing.
3) Ripple effect analysis can be used to identify all directly/indirectly affected

scenarios and thus the set of test cases can be selected for regression testing.
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Also, Ripple Effect Analysis can be used in Prioritization techniques.
Prioritization techniques schedule test cases for execution in an order that attempts to
maximize some objective function. (Maximize logical stability which means

minimize ripple effect).

6.3 Ripple Effect Using UML

Ripple Effect Analysis can be computed using the Unified Model Language.

Using a class diagram we can determine:

1) added/deleted attribute
2} changed attribute

3) added/deleted method
4) changed method

5) added/deleted relation
6) changed in relationship
7) added/deleted class

8) changed class

Using sequence diagram we can determine:

1) added/ deleted use case
2) changed use case

3) added/deleted method
4} changed method
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Change in two versions of same class diagrams:

Two wversion of the same diagram can be compared together to detect the sets of

added, changed and deleted attributes, method relationships and classes,

Added/deleted attributes: an added/deleted attribute is an attribute that is not declared
in the original/modified wversion of a given class but is declared in the

modified/original version of this class.

Changed attributes: this exists in both version of a given class but with a different

scope type or visibility.

Added/deleted method: it's a method that does not exist in the original/modified

version of a class but exist in the modified/original version of this class.

Changed methods: it has the same signature in the two class diagram version but a

number of other design changes translate into changed methods.

6.4 Possible Class-Level Ripple Effect Analysis estimation with
syntactic impact

To calculate the ripple effect of a class (say C), the algorithm applies all
possible class-level changes with syntactic impact (listed in table 1 and 2} to the
attribute and methods of all other classes in the design. Changes are applied one at a
time and they are all applied to the original design. For each change, the algorithm
computes the set of syntactically impacted classes and determines whether or not class
C is among them. The number of times that class C is found impacted divided by the
total number of possible changes represents the likelihood that class C will be change-
prone as a result of a class-level made else where in the design. As a result, the logical
stability of class C is simply one minus that ratio, Thefore, Ripple Effect = 1/ Logical
Stability. Given that types of changes are unpredictable and that no studies found that
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some changes are more likely than others, it was assumed that all types of class-level

changes are equally likely.

Attribute (A) of Class (C)
Change Type Syntactically Impacted Classes
Data type X
Delete X
Scope (Public to private) x—{C}
Scope (protected to private) X -{C}
Scope (Public to protected) X—[Z U{C}]

Table 6.6

Method (M) of Class (C)

Change Type

Syntactically Impacted Classes

Return Data type Y
Signature Y
Delete i
Scope (public to private) Y - {C}
Scope (Protected to private) Y- {C}
Scope (Public to protected) Y-[Z U{C}]

Where:

Table 6.7

» X is the set of classes, including C, that reference A
s Y is the set of classes, including C, that invoke M
o 7 isthe set of direct and indirect subclasses of C
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Algorithm:

ClassRippleEffect (Class C, ObjectOriented Design OOD)

Input : Class C, Object-Oriented Design OOD in which class C exists.
Output : The likelihood that C will not be change-prone as a result of a Class-level
change with syntactic impact made to another class in OOD.

Begin

TotalNumOfChanges = 0
NumOfChangesImpactedClassC =0
FOR each class A expect C in Q0D DO
FOR each attribute T in A DO
FOR each type of attribute change 1 DO (listed in table 6.6 above)
IF 1 can be applied to T THEN
IC = {set of classes impacted by applying 1 to T}
IF C belong to IC THEN
NMumOfChangesImpactedClassC ++
ENDIF
TotalNumOfChanges -++
ENDIF
ENDFOR
ENDFOR
FOR each method M is A DO
FOR each type of method change J DO (listed in table 6.7 above)
IF J can be applied to M THEN
IC = {set of classes impacted by applying I to M}
[F C belong to 1IC THEN
NumOfChangesImpactedClassC ++
ENDIF
TotalNumOfChanges ++
ENDIF
ENDFOR
ENDFOR
ENDFOR
ENDFOR
ClassLogicalStability = (1 — (NumOfChangesImpactedClassC /
TotalNumOfChanges))
RETURN ( 1 / ClassLogicalStability)
END

A future work could be implementing this algorithm and comparing the results with

the results of the algorithm suggested earlier in this thesis.
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6.5 Ripple effect in web pages

The internet is quietly becoming the body of the business world, with web
applications as the brains. Websites are something entirely new in the world of
software quality. This means that software faults in web applications have potentially
disastrous consequences. Within minutes of going online, a web application has many
thousands more users than conventional non-web applications. Most work done on
web applications has been on making them more powerful, but relatively little has
been done to ensure quality. The technical complexities of a website and variances in
the web browser make testing and quality control more difficult. Web applications
share some characteristics of client-server, distributed and traditional programs;
however, there are a number of novel aspects of web applications. These include the
fact that web application are "dynamic”, due to factors such as the frequent changes of
the application requirement as well as dramatic changes of the web technologies, the
fact that the roles of the clients and servers change dynamically, the heterogeneity of
the hardware and software components, the extremely loose coupling and dynamic
integration, and the ability of the user to directly affect the control of execution,
Measuring the ripple effect and logical stability of a website would therefore help

maintainers to achieve a more reliable websites,
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Chapter 7

Conclusion

In this thesis we have invested and studied ways and methods for calculating
the ripple effect for object orienmed software. We have also introduced a new
technique that will help in implementing an object-oriented software measurement
which we hope it will be beneficial to the software maintainer and developer by
computing ripple effect automatically. Measurement of ripple effect has been
incorporated into several software maintenance models to give maintainers valuable
information about the code they are maintaining. Maintenance is difficult because it is
not clear where modifications have to be made or what the impact will be on the rest
of the source code once those changes are made. The ripple effect can be used to help
maintainers with assessing that impact. Along with many other metrics, ripple effect
is not the answer to all maintainer's problems, but used as part of a suite of metrics it
can give maintainers useful information to make their task easier. Ripple effect is not
only useful during software maintenance. During software development it can be
compared for different versions of a program to ascertain whether stability is

increasing or decreasing and changes made accordingly.

Several ripple effect tools are already in existence for procedural software
only some of which compute ripple effect without taking intramethod change
propagation into account. Others are only semi-automatic, user intervention being

required at some point in the computation.

Our motivation in this research was to provide a ripple effect measure for
object-oriented program using matrix arithmetic quickly and completely
automatically. In order to calculate the ripple effect for object-oriented programs we
studied all object-oriented dependencies, relations and propagations inside and outside
the class. We had also studied object-oriented complexity metrics with their relation

with ripple effect and divided them into inter-class metrics and intra-class metrics
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after adding new object-oriented metrics. Our algorithm calculate the ripple effect for
object-oriented programs at the code level by calculating both intra-class propagation
and inter-class propagation for each class, and at architecture level by calculating the
ripple effect at the system level. In addition, the algorithm clarifies the process of
computing ripple effect. Each matrix used within the algorithm holds a particular type
of information about the software under scrutiny. This makes it easier to understand

what each part of the algorithm means and how the ripple effect is being computed.

We applied our method for calculating ripple effect on 2 examples: example.java and
calculations.java and explained step by step how the ripple effect is calculated using
matrix arithmetic then we used the ripple effect to calculate an index for logical
stability. We found that as ripple effect increases the logical stability of this program
decreases which means that methods with higher will face more problem when being
updated. The ripple effect measurement can also highlight high ripple effect methods

as a serious problem where these highlighted methods can be used later in regression

testing,

However, our suggested techniques for computing the ripple effect of local changes
have limitations. One limitation is the high cost of the computational method; the
barometer is the computation of the propagation matrix, which is of the order of the
square of the number of variable occurrences. The second limitation is concerned with
the program dependences; only ‘straightforward’ static dependences have been
considered and semantic and run-time dependences have been ignored. Further work
can address these limitations and can consider the use of the ripple effect measure in

other software engineering problems.
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