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Abstract

Maximal clique enumeration is one of the most important tools for solving problems
in a wide variety of application domains. Classical enumeration techniques suffer from being too
slow on large scale data. New techniques, introduced in the work of Abu-Khzam, decompose the
input graph into a smaller subgraph and its complement in an attempt to reduce the search space
and confine the exponential-time enumeration to subgraphs that are often small in practice. Such
subgraphs are called dominating structures in our work. We discuss different dominating
structures for the maximal clique enumeration problem, but we focus in our implementations on
two of them. The first structure is a vertex cover of the input graph and the second one is a
maximal matching of the complement of the graph. We consider these two edge capturing
structures on graphs of different densities. Our experimental study revealed that the vertex cover
approach is faster than the well-known Bron and Kerbosch (BK) algorithm on sparse graphs, as
well as graphs whose vertex covers are small. Theoretical analysis supports our findings since
the run time is improved from 003" to O(3"%), where k is the vertex cover size. Moreover, our

second approach proved to be faster than BK on graphs of high density.
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Chapter 1

Introduction

1.1 Definition of the problem

QOur focus in this thesis is on maximal clique enumeration in undirected simple
graphs. For a graph G = (V, E), where V is the set of n vertices and E is the set of edges,
a clique can be described as a complete subgraph of G, in the sense that all vertices are
pair-wise adjacent. A maximal clique is one that cannot be contained as a subgraph in
any larger clique, while a maximum clique is a clique of maximum size. There are two
corresponding clique detection problems; the maximum clique problem that asks for a
clique of largest size in the graph, and the maximal clique enumeration problem that
requires listing all maximal cliques in the graph. The maximal/mum clique problem is
equivalent to the maximal/mum independent set problem, because a maximum clique in

G is a maximum independent set in the complement graph of G,

1.2 Applications

Maximal clique enumeration is used to find correlations among items in a dataset, where
the problem is represented as a graph of items (vertices), and when any two items satisfy
certain relationship, an edge is placed between these two items. This enumeration of
objects that satisfy certain specifications is taking an increasing significance in many
scientific fields such as Biochemistry and Genomics (Butenko and Wilhelm 2004),
Artificial Intelligence (Eiter and Makino 2002), data mining (Agrawal and Srikant 1994)
and clustering (Stix 2001).

A well known sample application is Motif Finding, a Biological application that could
employ maximal cliques’ enumeration in order to identify motifs (or Transcription factor

binding sites). These are short stretches of DNA sequences that are located in the



promoter region of a gene. The input of an (L-d) motif problem consists of t sequences;
each sequence is a set of N nucleotides. The goal is to find a subsequence of length L
with at most d mismatches (mutations) to subsequences of length L in each of the t input
sequences.

One approach to solve this problem is called the Winnower method, which transforms
the problem into a instance of Maximum Clique. The Winnower algorithm divides each
sequence into N-L+1 possible L-letter substrings (signals), and then creates a t-partite
graph where each part's vertices are all L-letter substrings from one sequence. Since any
two instances of the mutated motif can differ in as many as 2d positions, edges of the
graph connect vertices with a maximum of 2d differences. In other words Winnower
constructs a graph with vertices corresponding to substrings from the sequences and puts
an edge between potentially similar substrings. Now a clique in the constructed graph
corresponds to a potential solution, since some maximal cliques do not correspond to a

correct solution, the best way may be to enumerate them all.

Volker Stix (2001) gave another example of a gray scale of 10 levels of gray and that the
human eye can distinguish between consecutive shades only if the distance between
these 2 consecutive shades is more than 1. So shade number 4 belongs to the cluster of
dark, grays whereas shade number 6 belongs to the cluster of light shades. Shade
number 5 belongs to both clusters at the same time because it can not be distinguished
from shade number 4 or shade number 6. Suppose that we have n objects given in a
measure space S and a metric d(i,j), which measures the distance between object i and j
in S . To find all non-distinguishable objects in the given space S, Stix uses maximal
clique enumeration. He represents the objects by graph nodes, where edges are placed
between vertices that cannot be distinguished, d(i.,j) <= | then i-j is an edge in the graph.

And any maximal clique will represent non-distinguishable objects in the given space.



1.3 Previous Work

The clique enumeration problem is known to be NP-hard (Gary and Johnson (1979)),
Moon and Moser (1965) proved that the number of maximal cliques of a graph could be
exponential with respect to the number of vertices, in fact a graph can have up to -

maximal cliques.

The most notable clique enumeration algorithm is the BK algorithm (Bron and Kerbosch
1973). BK offered a depth-first search algorithm for generating all maximal cliques in an

undirected graph.

There are three sets in this algorithm that play an important role:
e COMPSUB is the set of points forming the current growing clique, (all points in
COMPSUB are connected)
o CANDIDATES is the set of all points that can be added to the current
COMPSUB set.
e The set NOT of points that have already been added to COMPSUB.

The search tree internal nodes correspond to all non-maximal cliques and the leaves
represent (or hold) maximal cliques. At each node of the search tree, BK selects a vertex
v from CANDIDATES and adds it to COMPSUB, this will need the creation of a
NEW_CANDIDATES and NEW_NOT, where NEW_CANSISATES is the intersection
of CANDIDATES and the neighbors of v, N(v). The same applies for NEW_NOT =
NOT N N(v). This last step is very important in avoiding the generation of non-maximal
cliques.

In particular, if a search-tree node, say X, has a couple of children such that the first
resulted from adding vertex u to COMPSUB, then neighbors of u that are examined in
the second child of X must not consider the vertex u again, so u is kept in the NOT set of
descendants of X as long as neighbors of u are added to COMPSUB. A maximal clique
is declared in a leaf node only if both sets NOT and CANDIDATES are empty.




A simple description of the BK Algorithm can be the following (Initially CANDIDATES
contains all vertices, NOT is empty, and COMPSUB is empty)

Expand BK (COMPSUB, NOT, CANDIDATES)

i
IF CANDIDATES is empty and NOT is empty then

Generate the maximal clique COMPSUB
Return

Else

For each vertex u in CANDIDATES do the following

Add uto COMPSUB
New CANDIDATES = CANDIDATES N N(u)
New NOT =NOT N N(u)
Expand_BK (COMPSUB, New NOT,New CANDIDATES)
Remove u from CANDIDATES®
Add uto NOT

i

More recently, Tomita et al. (2004) proved that the worst case scenario for the BK
algorithm is 0(3"™), thus BK achieves the best possible worst-case performance as a
function of n, the number of vertices in G.

An improved version of the BK algorithm (Improved-BK) was also published in the
same paper as the Base BK (Bron and Kerbosch 1973), it has been proven to be faster
than Base BK with dense graphs while the Base BK proved to be twice as fast as the
improved BK on sparse graphs, and slower when the edge density increases. Improved
BK has one main difference from the Base BK, this difference lies in the choice of the
selected vertex v at each node of the search tree. If the previously selected candidate is
in array position p then the next selection will be for candidate in place p+1, this is how
the Base BK works. The improved BK does not select the vertex in position p+1 but
instead it chooses a vertex with the largest number of connections to the other vertices in
CANDIDATES. This modification is useful only if the time spent finding the maximum
degree vertex is less than the time spent on exploring the eliminated branches of the

search tree,



Tsukiyama et al. (1977) came with an algorithm to generate all maximal independent
sets in a graph G, and many researchers presented new algorithms to enumerate maximal
cliques based on Tsukiyama's algorithm. Makino and Uno (2004) presented new
algorithms that are based on Tsukiyama's algorithm, one of these algorithm enumerates
all maximal cliques of G in D{pﬂ."‘] where A is the maximal degree of G and p is the
number of independent sets in G, but Tomita et al. (2004) showed that, in practice, the
BK is much faster on sparse graphs than those based on the Tsukiyama et al method.
Kose et al. (2001) algorithm took a different approach, it starts from the fact that any
clique of size p where p > 2, is composed of 2 cliques of size p-1 that have p-2 vertices
in common. This algorithm requires an enormous amount of memory, Abu Khzam et al.
(2005) proved that the BK is much faster on sparse graphs derived from microarray data,
and after the implementation of a multi-threaded version of Kose's algorithm with load
balancing; Zhang et al. (2005) achieved a speed up of 383 on sparse graphs, but even
with this speed up the improved BK remains faster.
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1.4 The Dominating Structures Methodology

In order to achieve faster enumeration of maximal cliques, we adopt the dominating
structure approach of Dr. Abu-Khzam. We take a closer look at the structure of input
graphs. We consider a special type of subgraphs to which we can restrict the exponential
part of the enumeration process.

Such subgraphs, called here dominating structures, are problem-dependent in general
since different dominating structures can be associated to different problems. A
dominating structure is a subgraph that captures all non-trivial maximal cliques, in the
sense that any clique of size three or more has all but very few wvertices in the said
subgraph. This idea was first mentioned by Abu Khzam et al. (2005).

Examples of such MCE dominating structures include:

e Maximal matching, since the complement of (the vertex set of a maximal
matching induces an edgeless subgraph.

» Vertex cover, or set of vertices whose complement induces and edge-less
subgraph. Thus, a maximal matching is a special vertex cover.

e [Feedback vertex set, which is any set of vertices whose complement induces
an acyclic subgraph (tree of forest). Vertex covers are special feedback
vertex sets.

* Triangle vertex cover (AKA. triangle vertex deletion set), which is a set of
vertices whose complement induces a triangle-free subgraph. A feedback

vertex set is a special triangle cover.

We will discuss the first two examples in the second chapter. In the third chapter, we
apply the Maximal Matching dominating structure on the complement of the graph
instead of working on the initial graph, We present the experimental results and analysis
in chapter four. The last chapter is devoted to concluding remarks and a description of

the ongoing research in the MCE project.



Chapter 2

The Vertex Cover Dominating Structure

Recall that a vertex cover is a set of vertices that induce a subgraph whose complement
is edge-less. In other words, if G = (V.E) is a given undirected simple graph and S is a
vertex cover of G, then any edge of G has at least one of its endpoints in S. It follows
that any clique of G has at most one endpoint in the set I = V — S, This property is
enough to treat S as a dominating structure for MCE. We can take every element of |
and enumerate all maximal cliques in the subgraph induced by its neighborhood in §,
then we enumerate all maximal cliques of S that do not contain any element of 1. This
way, we reduce the exponential factor in the enumeration time of MCE to a function that

is exponential in the size of a vertex cover only. This leads to the following.

Lemma |: Let G be a simple undirected graph on n vertices and let k be the size of a
vertex cover of G. Then the number of maximal cliques in G is bounded above by (n — k

+ 1)3%5,

A simple proof of this lemma uses the fact that BK order is 3"* and when we apply BK
on a graph of size k (size of the dominating structure) then its order is n“?. And in the
proposed algorithm we are running BK for each element in I, |I] = n-k, and one
additional time without any element from I. So in total we are running BK on a graph of

size at most k+1 for (n-k+1) times.



Lemma | poses a couple of important questions:

e What properties of the input graph determine (or bounds) the number of its
maximal cliques?
e How could we design a structure-aware enumeration that makes the best use of

such properties?

Since the Maximal Matching is a special form of Vertex Cover and all what
apply on Vertex Cover applies also on maximal matching, we will refer in this section
the Vertex Cover dominating structure but it can be replaced by a Maximal Matching in
the same graph. When it is better to choose a Maximal Matching over a Vertex Cover or

the reverse will be discussed more in the experimental section of this paper.

2.2 Algorithm Pros and Cons

If all the work performed by the BK algorithm is spent on delivering maximal
cliques, then all we are saying here is that BK is faster on such graphs. However, we are
more concerned about fast implementations. So we proceed to the investigation of the
benefits of using a structure-aware implementation. We observed that, while the idea of
restricting the enumeration to a subgraph induced by a vertex cover is simple, there are

diverse types of implementations of such technique.

2.2.1 Method 1

If we follow the discussion preceding Lemma 1, we iteratively consider each element,
say v, of I and enumerate all maximal cliques in the neighborhood of v. Then we have to
enumerate the maximal cliques of Gs_ the subgraph induced by a vertex cover S. None of
these cliques is contained in the neighborhood of any vertex of I. This latter task is hard

to perform without duplicating the bulk of the effort spent in the first pass through the



elements of 1. Yet, this algorithm was faster than BK on dense graphs. A simple
description of the algorithm is the following:

We assume the set S is given together with the graph G represented by an adjacency
matrix. We start by creating a new adjacency matrix for Gs of size (c+1) = (¢+1) where ¢
is the size of the cover. Initially Gs contains all the vertices of S, and we leave the last
row and column empty to be filled each before each iteration with a different vertex
from L.

We use the same sets, as in the BK algorithm. COMPSUB, NOT and CANDIDATES
will consist of vertices of graph Gs, |S|, plus 1, initially NOT COMPSUB and
CANDIDATES are empty.

For every vertex unot in VC
Put u in COMPSUB
Adjust CANDIDATES to contain only neighbors of u
Add uto Gs
Run the BK-algorithm on Gs with the updated CANDIDATES set
Remove u from COMPSUB
Run a special-BK on Gs without adding any vertex from I, and initialize CANDIDATES to

contain all vertices in the S.

The special-BK is different from the known Base-BK algorithm in one thing: it has one
additional test before declaring that a maximal clique is found in the leaf nodes It checks
if the current clique in COMPSUB can be extended by the addition of any vertex from
outside the cover, if this is possible, then this solution is not maximal because it has

already been tested in another instance of the algorithm and we ignore such clique.

We noticed that using this implementation we have already some sort of independence
between tasks. Each task generated from a vertex in | plus its neighbors in Gs and a task
that contains Gs only. So we implemented a simple parallel version of this algorithm to
see its performance on a small cluster. The drawback was when Gs contains most of the
edges of G, then running BK on Gs for (n-k+1) times is a multiplication of the same

effort and resulted in bad results on certain graphs.



2.2.2 Method 2

Because of duplication of efforts in the above method, we proposed another
implementation that proved to be much faster during our experimental study.

The main idea is to enumerate all maximal cliques of Gs, and then expand each maximal
clique by adding a vertex from I. But this is not enough since some non-maximal cliques
of Gs can be expanded through 1. If we try to keep track of all non-maximal cliques that
are neighbors of at least one vertex of I, then enormous book-keeping would be needed.
A better approach, and the one we use here, is to follow the same BK search, restricted
to Gs. In what follows, N(v) denotes the neighborhood of vertex v in G. After reducing
the graph representation to Gs, the algorithm proceeds by applying the same BK search.
We use the same COMPSUB and CANDIDATES arrays that consist of vertices of Gs
only. Also we use an array Outsider_Degree to keep track of the degrees of elements of

I. which we call the outsiders.



At each node of the search tree, the following steps are performed (as part of the

function Expand_VC, which is the main routine of our algorithm):

Expand_VC (COMPSURB, NOT, CANDIDATES)
{
If CANDIDATES is empty then
For each outsider vertex t do
If (Outside Degree(t) = [COMPSUB|) And (1 has no neighbors in NOT) then
Generate the maximal clique ({t} U COMPSURB)
Flag P=1 (initially Flag P is zero)
If P=0 And NOT is empty then
Generate the maximal clique COMPSUB
Return
Else
For each vertex u in CANDIDATES
For each outsider vertex t do
If tis not in (N(u) U Outside NOT) And degree (t) = |[COMPSUB| And N(t) N (NOT U
CANDIDATES) is empty then
Generate the maximal clique formed by ({t} U COMPSURB)
Add t to Outside NOT
Else if't is in N(u) then
Increment degree of't
— Add uto COMPSUB
— New CANDIDATES = CANDIDATES M N(u)
—New_NOT =NOT M N{u)
— Expand_VC(COMPSUB, New_NOT and New_CANDIDATES)
-~ Remove u from COMPSUB
Update OutsideDegree (by decrementing the degrees of neighbors of u)
- Add uto NOT



The correctness of our algorithm follows easily from the discussion that preceded the
pseudo-code of Expand_VC. As for the run time, note that we used BK on the subgraph
induced by S, so the number of nodes of our search tree is in EI{EWJL ), where k is the
cardinality of S§. Moreover, at each node of the search tree we spend a linear time of (n-
k) to update the degree of outsiders, one time when adding u from CANDIDATES to
COMPSUB and one time after removing u from COMPSUB, and when we find an
outsider that form a maximal clique with the current growing COMPSUB, we check if
N(t) N (NOT U CANDIDATES) is empty what takes a complexity of k, the upper
bound of this is when all outsiders are forming maximal cliques with the current

COMPSUB. So the total run time is in O( ((n-k)k+(n-k)) (3**)).



Chapter 3

Enumerating maximal Independent Sets using the

Maximal Matching Structure

A maximal matching of a graph forms a dominating structure that divides the
graph into two subgraphs, a set of independent vertices and a set of matching edges. A
set M of edges in a graph G is a matching if no two edges in M have an endpoint in
common, and this set M is maximal if it can not be increased by any additional edge.
This gives us a set M containing only the maximal matching edges and a set 1 containing
the remaining independent vertices of the graph. There could be additional edges in the
graph that connect vertices in I to vertices in M, but no edge will exist connecting two
vertices in I, otherwise we will be able to mark this edge as a matching edge and then M
will not be maximal. Also there may be additional edges connecting vertices in M,
which can be as dense as a complete subgraph.

Although we could use the maximal matching of G as a dominating structure and
enumerate all maximal cliques in G directly, we choose here to go in a different way, we
will pick a maximal matching for the complement of G, G. Note that maximal clique
enumeration problem can be transformed into enumeration of maximal independent sets
in the complement graph since any maximal independent set in G will be a maximal
clique in G. The proposed algorithm will limit the enumeration to the set M, and then

adds all the remaining vertices from the set .



3.2 Algorithm Pros and Cons

The proposed algorithm will work on the set M. For each edge (u,v) in M, at
most one of the vertices u and v parties a member of an independent set, simply because
they are connected. So for any independent set I, and for each edge (u,v), we have three
possibilities: either u is in [ or v is in | or both u and v are not in I. We try all
corresponding combinations (of the three possibilities) among all edges in M. These
combinations will be used to generate independent sets that are maximal in Gy the
subgraph induced by edges of M, but may be extended by adding vertices from I. After
generating all possible maximal independent sets in Gy we add all remaining vertices in
I and we declare a maximal independent set in G. The order of this algorithm is clearly
3% where k is the number of edges in the maximal matching set M. We now describe this

algorithm in details.

Initially, we suppose that we have the complement of the initial graph in an adjacency
matrix, we call it G, and we use similar notations as those used in BK. The set
COMPSUB contains the growing independent set, the set NOT contains vertices that
have been already added to the global set COMPSUB (initially empty) and the set
CANDIDATES is initialized to contain all vertices. Moreover, we have the Maximal
Matching of G in set M. Enumeratel, below, enumerates all maximal independent sets.

It takes three arguments: the next edge in M, the CANDIDATES and NOT sets.

20



Enumeratel{ CANDIDATES, NOT, matching_edge u-v)
{
If there are no more edges in M then
Add to the new-independent array all remaining vertices in CANDIDATES
MNew NOT = NOT — the neighbors of the added vertices from 1
If NOT is empty then print this maximal independent set otherwise this result is not
maximal and it was already printed (s0 ignore this case).
Else
ifuis in CANDIDATES
Add uto COMPSUB
NEW_CANDIDATES = CANDIDATES - N(u)
New NOT =NOT — N(u)
Enumeratel(NEW_NOT,NEW_CANDIDATES, Next_matching Edge)
Remove u from COMPSUB and add it to NOT

if v is in CANDIDATES
Add v to COMPSUB
NEW_CANDIDATES = CANDIDATES - N(v)
New_NOT = NOT - N(v)
Enumeratel(NEW_NOT,NEW_CANDIDATES, Next_matching_Edge)
Remove v from COMPSUB and add it to NOT

NEW_NOT =NOT +( {u,v} N CANDIDATES)
EnumerateI(NEW_NOT,CANDIDATES, Next_matching_Edge)

21



Theoretically, the run time of our algorithm depends on the size of the maximal
matching: the smaller the matching size the faster is the enumeration. In order to
improve upon the (somewhat generic) worst-case scenario of the BK strategy, the input
graph should have a maximal matching whose size is smaller than n/3. This being the

case because the worst-case run time of BK is 0[3“’3}‘

The density of the graph plays another major role in determining which algorithm is
faster. Recall that BK is faster on sparse graphs than it is on dense ones. The value of k
could affect the density in some extreme cases. For example, suppose we have k=n/4.
This makes the graph density of G at most 50% (50% of the vertices are not part of the
matching, so they induce an edgeless subgraph). In this case, the density of the

complement graph (which is the one BK takes as input) is at least 50%.

Again, let G be the complement of the input graph G of BK. Another interesting
scenario is when G has n/3 edges in M. The vertex set of M contains 2n/3 vertices. So |
contains n/3 vertices. Again, there are 0 edges among vertices in 1, but vertices in M can

form a complete subgraph. This yields the following formula:

Maximum number of edges in G = (maximum number of edges in M) + (maximum

number of edges from M to I) = (2n/3 (2n/3-1))/2 + 2n/3(n/3) = n(n-1)/3

We know that the maximum number of edges in a graph of n vertices is n(n-1)/2. Then
(Maximum number of edges in G) / (maximum number of edges in any graph) = 2/3,

It follows that the maximum density of G is 66%. So the input to BK has a minimum
density of 33%.

The above numbers are only a guide for us. They show that graphs of large density could
have complements of small maximal matching, which is a favorable condition for our
independent set enumeration algorithm. In practice, there are many other factors that
may affect the speed-up. We realized, based on experimental study, that the local density
of the subgraph induced by the vertex set of M (Gy) plays a major role determining the

speed-up/slow-down from using our algorithm. This will explained in the next chapter.
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Chapter 4

Experimental Analysis

4.1 BK verses Vertex Cover approaches

In our experiments, we generate random graphs with different sizes, vertex cover sizes,
and densities. Each graph was generated based on these factors. In other words, our
random generator takes the vertex cover size, k, as input instead of generating a graph
and, later, finding the minimum vertex cover. This reverse engineering technique was
necessary for us because we wanted to know the relationship between the ratio k/n and

the speedup. Moreover, we are not interested in finding the smallest vertex cover.

The speed-ups that we recorded looked somewhat sporadic (initially). We could have
two different experiments such that the first graph has a smaller vertex cover than the
second, yet our Expand_VC code could be faster on the second graph. Our investigation
of this behavior revealed that the density of the graph Gs (induced by the cover) plays a
major role. This is not a surprise, given that BK is faster on sparse graphs and given that
we are employing BK on Gs. But the question was not completely resolved as such,
since we could have covers whose size is 50% and others of size 90%, yet the latter ones
yield better results. Further investigation showed that the ratio of edges of Gs to the
edges in the input graph is responsible for this behavior. Again, the main reason for this
was obvious. BK spends most of its computation time on dense regions of the graphs, if
a vertex cover is denser than (or at least as dense as) the graph then the time complexity

of our algorithm may not be better than that of BK.

In all of the following experiments we used n = 10000 for the graph size. We ran the two
codes on graphs of densities in the range 1% through 5%. To guarantee the ratio k/n in

generated graphs, we generated our graphs by first generating edges between the k
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vertices of the cover (using a specified number of edges), then we generate edges that

connect cover vertices to the outsiders.

The following experiments were performed on a Pentium 4 3.4 GHz machine, with 1
GB of RAM. The operating system is a Rocks 4.2 Beowulf Cluster Solution. The
following table shows experiments on graphs of density 2%. It gives an idea on how the
charts were generated. The times reported here are system times, all expressed in
seconds.

In what follows, the term speed-up is the ratio of the BK Time to the time of our

algorithm.
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vC
size
3000
3000
3000
3000
3000
3000
5000
5000
5000
5000
5000
5000
5000
5000
5000
7000
7000
7000
7000
7000
7000
7000

7000
7000
7000

3.714444921

VC density

10.222274091
2.445015005
4.667755919

6.890496832
9.113237746

11.33597866

0.080008002
0.880088018
1.680168034

248024805
3.280328066
4.080408082
4.880488098
5.680568114

6.48064813
0.040818076
0.448998837
0.857179597
1.265360358
1.673541118
2,081721879

2.489902639

2.8980834
3.30626416

Table 4.1 BK Vs Expand VC

Number of
maximal cliques
135415
1344282
2063446

2600506
3589643

6446735
78923
702551
1089588
1392318
1670109
1978022
2349259
2788454
3491065
55401
560570
914205
1084232
1193014
1285585
1426684
1626276
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When we apply the same experiments for the first approach implementation we notice
that the speed-up in regards to the BK algorithm is only in the cases where the ratio of
the cover edges to the total edges in the graph is less than 10%.

We could use a parameter driven search that will eliminate vertices and edges from the
graph if they are not part of any maximal clique of a certain user-defined parameter p. p
will be the minimum required clique size, vertices and edges that are not part of any p
clique should be removed from the graph. This kind of graph pruning was mentioned in
more than one paper including Abu Khzam et al. (2005) and the Winnower algorithm
that focuses on finding spurious edges to eliminate them before the clique search
(Pevzner et al. 2000). But using these techniques will not allow us to compare our
algorithm to the BK algorithm. In all experiments we used the BK algorithm exactly as
presented in the initial paper and more details about the implementation were also

mentioned in (Tomita et al 2004).

Table 4.2Comparing method 1 Vs method 2

Number Number of

of Graph VC vC maximal BK Expend First

Vertices Density size  Density Cliques Time VC Approach VCIG
10000 5 1000 4 10533488 2863 42 234 0.79928
10000 5 1000 15 60356877 27457 674 3345 29973
10000 5 2000 4 10928783 2770 116 798  3.19872
10000 5 2000 8 19930002 6911 506 5676 639744
10000 2 5000 2 1261017 303 80 8567  24.9975
10000 2 5000 1 708848 223 35 809  12.4987

All of the above experiments use a maximal matching of the graph, since a maximal

matching is a special vertex cover, and these graphs are generated synthetically, the

result will not differ if the dominating structure used was a cover or a matching. The

best way to choose what to use between the vertex cover or the maximal matching is the

characteristics of the graph induced from this cover or from this matching. As we

noticed in the experiments, the smaller the percentage of edges in the dominating

structure (Matching or Cover) the better the speed-up.
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4.2 BK Vs Maximal Matchings to Enumerate Maximal Independent
Sets in the Complement Graph

In our experiments, we also generated random graphs with different sizes, maximal
matching sizes, and densities. Each graph was generated based on these factors. But here
we generate the complement also to apply BK on it. It is almost the same idea as in the
above synthetic graph generation. Again, we needed this reverse engineering technique
because we wanted to know the relationship between the ratio of edges in the matching
to the edges in the graph and the speedup. Moreover, we are not interested in finding the

smallest maximal matching.

Since in these experiments we are interested in dense graphs, we had a problem with BK
because it could take hours before it finishes on dense graphs, even if the graph size does
not exceed 100. So we had two sets of experiments: one on graphs of size 50 and
another on graphs of size 100, the results below display CPU time, expressed in seconds.
The experiments where done on the same machine as the above (Pentium 4 3.4 GHz
with 1 GB of RAM).
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Table 4.3 Enumeratel Vs BK on graph size 50)

G G Comp MM Edges in MM/ Maximal

Vertices Density Density  Size  EdgesinG  Cliques BK Sec MM Sec
50 10.00 90.00 23 90% 34 0 0
50 15.00 85.00 22 80% 59 0 0
50 15.00 85.00 22 90% 46 0 0
50 20.00 80.00 20 60% 101 0 0
50 20.00 80.00 20 70% 9% 0 0
50 30.00 70.00 18 50% 197 0.001000 0
50 30.00 70.00 18 60% 148 0.001000 0
50 30.00 70.00 18 70% 64 0.002000 0
50 40.00 60.00 16 40% 271 0.022000 0
50 40.00 60.00 16 50% 178 0.022000 0
50 40.00 60.00 16 60% 90  0.024000 0
50 50.00 50.00 13 10% 378 1.043000 0.005000
50 50.00 50.00 13 20% 341 1.045000 0
50 50.00 50.00 13 40% 132 1014000 0
50 50.00 50.00 13 50% 47  1.155000 0
50 50.00 50.00 16 10% 1759 0.078000
50 50.00 50.00 16 20% 805 0.020000 0.008000
50 50.00 50.00 16 40% 573 0.018000 0
50 50.00 50.00 16 50% 435 0.019000 0
50 50.00 50.00 16 60% 220 0.026000 0
50 50.00 50.00 16 70% 108 0.041000 0
50 50.00 50.00 16 80% 39 0.072000 0
50 60.00 40.00 10 10% 264 69.190000 0
50 60.00 40.00 10 20% 182 65.706000 0
50 60.00 40.00 13 10% 844 1.075000 0.008000
50 60.00 40,00 13 20% 804 1.079000 0,001000
50 60.00 40.00 13 40% 326 1.034000 0
50 60.00 40.00 13 50% 151 1,234000 0
50 60.00 40.00 13 60% 60 1.460000 0
50  60.00 40.00 16 10% 3811 0.141000 -
50 60.00 40.00 16 20% 1363 0.027000
50 60,00 40.00 16 40% 1221  0.022000 0.001000
50 60.00 40,00 16 50% 924 0.028000 0
50 60.00 40.00 16 60% 601 0.038000 0
50  60.00 40.00 16 70% 331 0.094000 0
50 60.00 40.00 16 80% 146  0.218000 0
50 70.00 30.00 9 10% 531 273598000 O
50 70.00 30.00 9 20% 214 266.805000 O
50 70.00 30.00 9 40% 25 278297000 O
50 70.00 30.00 13 10% 2228 1.087000 0.023000
50 70.00 30.00 13 20% 2323 1.183000 0.003000
50 70.00 30.00 13 40% 934 1,499000 0
50 70.00 30.00 13 50% 423 1.560000 0
50 70.00 30.00 13 60% 225 2609000 0
50 70.00 30.00 13 70% 116  4.594000 0
50 70.00 30.00 13 80% 50 9.306000 0
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G G Comp M Edges in MM/ Maximal
Vertices Density Density Size Edges in G Cliques BK Sec MM Sec

50 70.00 30.00 16 10% 4327 0.383000

50 70.00 30.00 16 20% 3884 0.052000

50 70.00 30.00 16 40% 4020 0.051000 0.004000
50 70.00 30.00 16 50% 3015 0.062000 0.002000
50 70.00 30.00 16 60% 1769 0.119000 0.001000
50 70.00 30.00 16 70% 911 0.316000 0

50 70.00 30.00 16 B80% 494  0.769000 1]

50 80.00 20.00 7 0% 311 3967.035000 0

50 B0.00 20.00 i 20% 105 3786916000 0O

50 80.00 20.00 10 10% 3308 75.541000 0.003000
50 80.00 20.00 10 20% 1564 71.298000 0

50 80.00 20.00 10 40% 292 98.088000 0

50 80.00 20.00 10 50% 143 124.182000 0

50 80.00 20.00 10 60% 75 154.903000 0

50 80.00 20.00 10 T0% 38 262.466000 0

50 B0.00 20.00 13 10% 11920 1.500000 0.071000
50 80.00 20.00 13 20% 7834 2.252000 0.017000
50 80.00 20.00 13 40% 3213  3.044000 0.002000
50 80.00 20.00 13 50% 1175 8.550000 0.001000
50 B0.00 20.00 13 B0% 728 11.358000 0

50 80.00 20.00 13 70% 404 19.270000 0

50 80.00 20.00 13 80% 223 33.731000 4]

50 80.00 20.00 16 10% 16358 1.314000

50 80.00 20.00 16 20% 13983 0.395000 0.338000
50 B0.00 20.00 16 40% 8750 0.665000 0.036000
50 B0.00 20.00 16 50% 10051 0.567000 0.013000
50 80.00 20.00 16 60% 3976 1.6681000 0.006000
50 80.00 20.00 16 T0% 2798 2.182000 0.003000
50 80.00 20.00 16 80% 1743  5.809000 0.002000
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Table 4.4 Enumeratel Vs BK on graph size 100
G G Comp Current Edges in MM  Maximal
Vertices Density Density MM /EdgesinG  Cliques BKSec MM Sec
90 46 90% 210

50% 1222 38205  0.003
60% 755 37161  0.001

100 30 70
100 30 70

B8 888

As a conclusion of our experimental study on this MM algorithm, the best results were

obtained when we have a small and dense matching. The speed-up decreases when the
matching is large and more than 80% of the graph edges are not in the graph induced by
vertices of M.
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Chapter 5

Concluding Remarks

Real data is rich in structural properties. A blind application of generic enumeration
methods that work for general graphs is unfair for many such data sets. As can be seen
from our experimental results, obtaining a high speed-up depends on finding small
sparse dominating structures. Our proposed method takes into consideration this fact and
benefits from such structures when they exist, by reducing the graph into smaller
subgraphs that dominate all non-trivial cliques. Vertex covers were used as MCE
dominating structures because any maximal clique in a graph has all but at most one
vertex outside a vertex cover. Many other examples of MCE dominating structures exist

and are the subject of future potential improved MCE algorithms.
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